简介:探讨多连通域的Bergman空间上的具有分段连续符号的Toeplitz算子,刻画了它们的本质谱和Fredholm指标.
简介:设A是一个每列至少有二个元素为1的不可约0,1方阵,(∑A,σA)为由A所决定的符号空间有限型子转移.在∑A上定义一个与其拓扑相容的度量d使得(∑A,d)的Hausdorff维数为1.若C是H1可测的σA的LiYorke混沌集,则H1(C)=0;若A是本原的,则存在一个σA的有限型混沌集S使得H1(S)=1,其中H1为1维的Hausdorff测度
简介:AsacontinuationofpartIofthepaperunderthesametitle,wedevelopgeneralmonotonicenclosuremethodsforthecouplesystemsofthesplittingequations{x=G([x]a,[x]b,[y]c)y=G([y]a,[y]b,[x]c),whichmodelsthesystemofequationsassociatedwithhybridandaaynchronottsmonotonicityaswellasconvexity.Theresultingalgorithmsandconvergencetheoremsgeneralizeandunifyvariousknownmethodsandmonotonicenclosuretheorentsestablishedbyotherauthors.
简介:本文主要研究调和Bergman空间L_h~2(D)上以拟齐次函数为符号的两个小Hankel算子的有限秩换位问题.
简介:设G是一个阶数大于等于4的简单连通图.代4(G)和d4(G)分别表示G的第四大无符号拉普拉斯特征值和第四大度.本文证明了K4(G)≥d4(G)一2.