简介:在一个类似于稳定不等式的条件下,得到了欧氏空间中完备极小子流形的Bernstein型定理.我们的结果部分推广了LiH.Z.和WleiG.X.的定理.
简介:设M为S^n+1中紧致极小超曲面,Mp,n-p为Sn+1的Clifford极小超曲面,若Spec(M)=Spec(Mp,n-p)在一定条件下,我们可以得出M与Mp,n-p等距同构。
简介:给出了极小拟5连通图及围长大于或者等于4的极小拟(k+1)连通图的最小度.
简介:求出了(n-3)-filiform李代数的极大环面,并证明了(n-3)-filiform李代数是可完备化的.
简介:在Tikhonov正则化方法的基础上将其转化为一类l1极小化问题进行求解,并基于Bregman迭代正则化构建了Bregman迭代算法,实现了l1极小化问题的快速求解.数值实验结果表明,Bregman迭代算法在快速求解算子方程的同时,有着比最小二乘法和Tikhonov正则化方法更高的求解精度.
简介:如果对一个简单图G的每一个与G的顶点数同奇偶的独立集I,都有G-I有完美匹配,则称G是独立集可削去的因子临界图.如果图G不是独立集可削去的因子临界图,而对任意两个不相邻的顶点x与y,G+xy是独立集可削去的因子临界图,则称G是极大非独立集可削去的因子临界图.本文刻画了极大非独立集可削去的因子临界图.