简介:利用单频GPS载波相位差分技术进行动态精密测量时,由于观测历元少,经典LAMBDA算法会出现法矩阵病态导致整周模糊度无法求解。针对这一问题研究了基于TIKHONOV正则化原理的改进LAMBDA算法。通过对双差观测方程系数矩阵进行奇异值分解选取正则化矩阵,改善了法矩阵的病态性,获得了更高精度的浮点解。利用均方误差矩阵替代协方差阵进行LAMBDA求解,提高了模糊度求解的速度和成功率。对连续100组5个历元实测数据计算表明:与原算法相比,改进LAMBDA算法求得的浮点模糊度偏差从36.48周减小到4.08周,搜索效率和成功率分别改进97.74%和100%。
简介:为了提高潜器导航定位精度,针对等值线算法在惯导系统初始误差较大时易发散的问题,提出基于概率神经网络调优的等值线改进方法。首先,在搜索区域内,利用概率神经网络算法对惯导系统航迹进行调优,并经过卡尔曼滤波器与惯导系统航迹进行信息融合形成待匹配航迹;在此基础上利用实时等值线算法得到最佳匹配位置。分别在不同初始条件下进行仿真分析,得出概率神经网络算法在大的初始误差下不易发散但定位精度不高的结论,然后在潜器行驶6h后,初始误差为5.438?的条件下进行仿真验证,结果表明,改进方法定位精度均值优于0.537?,从而证明改进方法是有效的,即使在大的初始误差下仍然能够达到较高的定位精度。