简介:纳米孔隙内气体流动的理论预测对气体微流控器件的设计和制造具有重要的理论指导作用,文章采用分子动力学方法研究了氮气、氧气和二氧化碳混合气体在平行壁纳米孔隙内的剪切流动特性和边界滑移特性.研究结果表明:随着加入二氧化碳比例的不断增加,混合气体滑移速度不断增大,并且当二氧化碳的比例低于20%时,混合气体流动速度沿孔隙宽度方向呈线性分布;而当比例达到40%后,其速度轮廓将呈现非线性趋势.当二氧化碳所占比例为20%时,随着孔隙宽度的增加,混合气体的整体边界滑移随之减小.探究了混合气体密度和气-固耦合强度对混合气体流动及边界滑移的影响机理.发现随着混合气体密度的减小,气流边界滑移增大;随着气-固界面耦合强度的增强,边界气体分子易被吸附而出现黏滑运动,气体分子在边界处的积聚现象增强,剪切应变率增大,边界滑移减小.
简介:《气体物理》由中国航天科技集团公司主管、中国航天空气动力技术研究院(主要主办单位)、中国宇航出版有限责任公司共同主办。国内统一连续出版物号为CN10-1384/03,中文,双月刊,大16开。逢单月(一月、三月、五月、七月、九月、十一月)出版,每年6期,每期64页。《气体物理》主编是中国航天空气动力技术研究院院长李锋。第三届编辑委员会由11名高级顾问、9名副主编、58名编委组成,其中中国科学院院士10名。《气体物理》的办刊宗旨:立足航天,面向全国,全面展示和介绍气体物理理论与应用领域最新研究成果和行业动态,为科技工作者提供理论研究与工程应用交流平台。
简介:文章首先采用单相浮阻力模型对不同加速度下Rayleigh-Taylor不稳定性诱发的物质渗透边界的演化过程进行了计算,揭示了该混合在常加速度和变加速度情况下不同的发展规律,并通过与实验结果的比较分析,验证了该模型的适用性.在此基础上,发展了多相浮阻力模型,采用该模型对常加速度情况下含尘气体中的RayleighTaylor不稳定性诱导混合进行了研究,发现混合区宽度随着颗粒数密度和颗粒尺寸的增大而减小,揭示了气体中所含杂质抑制混合发展的规律.