简介:针对传统压电型声矢量传感器无法兼顾小体积与高灵敏度的问题,利用MEMS电容加速度计作为拾振器,实现矢量传感器的小型化设计。首先采用机电类比分析的方法得到内置加速度计的刚硬球体的声致振动响应;然后进行硅微电容加速度计选型和参数分析、设定,并设计制作了一只二维球形矢量传感器样机;最后对样机进行了参数测试,结果表明两矢量通道均具有良好的方向性,声压灵敏度分别为?185dB和-186dB(1kHz,0dBref1V/μPa),通道间相位差与理论值保持一致,验证了利用MEMS电容加速度计设计矢量传感器的可行性。
简介:目的:基于支持向量机回归(SVR)模型在非线时间序列的预测能力及经验模态分解(EMD)方法在处理非线性非平稳性的优势,提出一种复合自回归经验模态分解支持向量机回归(AR-EMDSVR)模型,提高非线性非平稳船舶运动极短期预报精度。创新点:1.研究非线性非平稳船舶运动的极短期预报问题,提出一种复合的预报方法;2.基于不同层次的预报模型和模型试验数据,分析非线性非平稳性对极短期预报精度的影响。方法:1.在SVR模型中引入基于自回归(AR)预报端点延拓的EMD方法,形成复合的AR-EMDSVR预报模型;2.基于集装箱船模水池试验运动数据将AR-EMD-SVR模型与AR、SVR和EMD-AR三种模型进行比较,分析非线性非平稳性对极短期预报的影响以及不同模型的预报性能。结论:1.AR-EMD方法能够有效的克服非平稳对极短期预报模型(AR和SVR)在精度上所带来的不良影响;2.基于船模试验数据的预报结果表明:相较于AR、SVR和EMD-AR三种预报模型,基于AR-EMD-SVR模型的非线性非平稳船舶运动极短期预报结果具有更高的精度。