简介:针对嫦娥三号软着陆轨道设计与控制策略问题,在合理假设的前提下,建立动力学模型,求解得到了嫦娥三号着陆准备轨道近月点和远月点的速度。针对软着陆过程的6个阶段,通过受力分析,建立了嫦娥三号运动的微分方程模型,以燃料消耗最小为优化目标,以每个阶段的起止状态为约束条件,将软着陆轨道的优化设计问题转化为主发动机推力的泛函极值问题,并将其控制函数转化为近似的多项式函数优化问题。运用四阶Runge-Kutta差分迭代方法进行求解计算,从而得到各个阶段的最优控制函数和控制策略。结果表明,嫦娥三号软着陆过程耗时695s,消耗燃料1269.1kg。
简介:线性矩阵不等式的优良性质可用于解决细胞神经网络中的保性能控制问题.本文介绍了线性矩阵不等式的相关概念和性质;通过对Schur补引理的改进提出了一个引理,从而更容易将二次矩阵不等式转化为线性矩阵不等式,更好地应用于控制参数求解;提出了LMI的基本问题和MATLAB工具箱,并对LMI在细胞神经网络的保性能控制问题作出了简要描述.
简介:提出并研究具有反馈控制变量和Holling-Ⅱ类功能性反应的修正Leslie-Gower离散捕食系统的持久性问题,通过运用差分不等式得到了一组保证该系统持久的充分性条件.该结果表明反馈控制变量不会影响系统的持久性从而改进了已有的结果.数值模拟显示了本文结果的可行性.
简介:本文研究了有界相容不变性的问题.利用局部收敛的概念,给出了线性拓扑Tb的一些性质,由此获得了Banach-Mackey性质的若干新特征.