简介:针对Kalman滤波器在捷联惯导系统(SINS)初始对准中的应用,系统分析了Kalman滤波器参数(包括估计误差协方差阵初值P0,模型噪声方差阵Q和量测噪声方差阵R)选取对系统状态变量的估计精度和收敛速度的影响。采用协方差性能分析法,进行了Kalman滤波器参数优化仿真,仿真结果表明:调整扁的取值可改变状态变量估计的收敛速度,调整Q或R的取值,既可改变状态变量(尤其是陀螺误差)的收敛速度又可改变它们的估计精度。综合考虑时,局的取值要比真实值大一些,Q和R的取值要比真实值小一些,这样既可缩短陀螺误差和加速度计偏置误差的估计时间,又可提高它们的估计精度。文中还给出了使滤波器正常可靠工作的P0、Q和R参数的范围。
简介:目的:1.比较并改善翼型参数化方法,获得设计变量少、拟合精度高的参数化方法;2.在参数化的基础上利用数值模拟的方法获取翼型流场参数,优化并获得特定条件下升阻比最大的翼型。创新点:1.通过与多项式拟合方法的对比证明了类别/形状函数转换(CST)法在翼型拟合方面的优越性,并通过调整控制点分布,在不增加设计变量的基础上改善了CST方法;2.通过建立响应面模型,利用多岛遗传算法与非线性序列二次规划法相结合的方式获得了更好的翼型优化效果。方法:1.利用修饰后的CST法对翼型进行参数化拟合与设计,并通过与二项式拟合法比较来验证其优越性;2.通过数值方法对翼型周围流场进行计算并与实验结果对比,获得精确计算气动参数的仿真条件;3.通过拉丁超立方采样获得设计变量,建立设计变量与翼型升阻比之间的响应面模型,通过多岛遗传算法与非线性序列二次规划法的结合和优化,得到一定条件下升阻比最大的翼型。结论:1.CST法是一种优秀的参数化方法,本文的优化改善了形状函数控制点选取法则,使其对翼型头部和尾部的描述更加精确;与多项式相比,CST法可以通过更少的设计变量得到更高的拟合精度。2.基于多岛遗传算法的非线性序列二次规划法在本文中用以优化翼型使其具有更高升阻比。优化前后翼型的比较显示,两种优化方法的结合可以得到比单独使用各优化方法更好的结果。
简介:硫是在作物生长过程中必不可少的营养元素之一,主要参与作物生理代谢及生长发育。因此,土壤中硫的含量一直是人们关注的热点,快速准确的检测方法也成为人们研究土壤中硫的关键。在高温燃烧碘量法测定土壤硫含量中,碘酸钾溶液滴定亚硫酸时,对于低含量样品,滴定终点的判断较为困难。通过大量的实验,采用硫代硫酸钠滴定吸收器中反应后剩余的碘酸钾溶液,滴定终点由蓝色消失为无色。终点便于肉眼的观察,提高了分析结果的准确性和再现性;采用Excel中的Linest函数回归标准物质滴定校准工作曲线,方法简便快速。通过国家一级标准物质的分析验证,结果显示,方法的检出限为50.0mg/kg,方法的相对标准偏差(RSD)小于7%,△lgC<0.03,适用于大批量土壤样品中硫的测定。
简介:AinteriorpointscalingprojectedreducedHessianmethodwithcombinationofnonmonotonicbacktrackingtechniqueandtrustregionstrategyfornonlinearequalityconstrainedoptimizationwithnonegativeconstraintonvariablesisproposed.Inordertodealwithlargeproblems,apairoftrustregionsubproblemsinhorizontalandverticalsubspacesisusedtoreplacethegeneralfulltrustregionsubproblem.Thehorizontaltrustregionsubprobleminthealgorithmisonlyageneraltrustregionsubproblemwhiletheverticaltrustregionsubproblemisdefinedbyaparametersizeoftheverticaldirectionsubjectonlytoanellipsoidalconstraint.Bothtrustregionstrategyandlinesearchtechniqueateachiterationswitchtoobtainingabacktrackingstepgeneratedbythetwotrustregionsubproblems.Byadoptingthel1penaltyfunctionasthemeritfunction,theglobalconvergenceandfastlocalconvergencerateoftheproposedalgorithmareestablishedundersomereasonableconditions.AnonmonotoniccriterionandthesecondordercorrectionstepareusedtoovercomeMaratoseffectandspeeduptheconvergenceprogressinsomeill-conditionedcases.
简介:针对亚轨道可重复使用运载器(SRLV)的应用需求,在将卫星投送到预定轨道同时确保SRLV安全返回的前提下,对基于记忆原理的轨迹/总体参数一体化优化方法进行了研究。记忆优化算法是一种具有全局收敛性的随机搜索方法,每次搜索的试探解优劣状态由记忆元来存储。利用记忆原理的记忆增强和遗忘规律来衡量优化搜索过程中试探解的状态,并以燃料最省作为优化指标。同时采用三种不同的搜索策略,实现对试探解的随机搜索,避免陷入局部极小问题,并以此来提高搜索速度。仿真表明:卫星入轨速度偏差小于2m/s,高度偏差小于10m,轨道倾角偏差小于0.0001°。SRLV最终与着陆场的位置偏差小于100m,速度偏差小于5m/s。相较于传统的轨迹优化方法,新方法适用于复杂的轨迹/参数一体化优化问题,搜索速度快,求解精度高,有利于算法在工程实际中的应用与推广。
简介:准确是判断解题的唯一标准,对填空题来说要求更高、更严格.用笔误等理由来解释错误原因有害无益.必须基本知识熟练,基本方法得心应手,联系与转换自如,辅以认真审题,明确要求,正确表达等,才能提高准确性.复习是更深层次的学习,我们完全可能把学生带到比较完善的境界.例1 若x2-2x-2=(x2-4x+3)0,则x=.错解 原方程即x2-2x-2=1,解出x1=-1,x2=3,∴填-1或3.错因,由于概念不清或者方程的转化不合理,疏忽了x2-4x+3≠0,产生增根.图G-13例2 如图G-13,PA、PB是⊙O的切线A、B是切点,∠APB=78°,点C是⊙O上异于A、B的任意一点,那么∠ACB=.错解