简介:受非线性增生映射值域的扰动定理的启发,研究了非线性边值问题(@)在L^p(Ω),1<p<+∞中解的存在性。(@){-∑^Ni,j=1σ/σxi(ai,jσu/σxj)+∑^Ni=1bσu/σxi+g(x,u)=fa.e.inΩ,-σu/σna∈βx(u(x))a.e.onΓ其中f∈L^p(Ω),1<p<+∞给定,g:Ω×R→满足Caratheodory条件。本文把Gupta和Hass所研究的非线性方程加以推广,即在方程中增加了∑^Ni=1bσu/σxi这一项,并把解的存在性的讨论由L^2(Ω)空间推广到L^p(Ω),1<p<+∞空间中。
简介:在一致光滑Banach空间中,证明了广义Lipschitzφ-增生算子的带误差项的Ishikawa迭代序列强收敛于方程Tx=f的解,其结果改进和扩展了近期许多相关结果.并由此得出了Ishikawa迭代序列稳定性的一些结果.
简介:使用新的分析技巧研究了对于广义最速下降逼近法收敛到m-增生算子零点的充要条件,所得结果推广了几位作者早期与最近的相应结果.
简介:利用范数假设条件给出了带扰动的m一增生算子的一些映射定理.其结果是:B+D R(T+C)并且int(B+D) R(T+C)的类型.其中B、D是实Banach空间X的子集,算子T:X D(T)→2~X至少是m一增生的,扰动算子C:X D(C)→X至少是紧、demi一半连续或完全连续的.这些结果推广和改进了已有文献的有关结果.
简介:设E是任意实Banach空间,T:E→E是Lipschitz的强增生算子.证明了,带误差的Ishikawa迭代序列强收敛到方程Tx=f的唯一解.特别地,还给出了Ishikawa迭代序列的收敛率估计.另一方面,一个相关结果,讨论了E中lipschitz强伪压缩映象的不动点的带误差的Ishikawa迭代序列的收敛性.
简介:设X是实Banach空间,D是X的一个子集,T:X→X是一强增生算子,从而得到带误差的Mann迭代序列的逼近不动点的强收敛问题.
简介:在q(≥2)一致光滑的实Banach空间中,研究了一类非Lipschitz,非值域有界的φ-强伪压缩映射和φ-强增生映射的Ishikawa迭代收敛问题,所得结果扩展了该领域目前所有的相关结果,因而在目前更具有一般性和广泛性.