简介:在Banach空间中利用一个随机Mann迭代序列组,讨论了随机映射的随机不动点的存在性问题,得出了几个随机不动点定理,改进了相关文献中的相应结果.
简介:研究了随机半闭1-集压缩算子和随机凝聚算子的随机不动点指数问题,推广了郭大钧文中的几个定理.
简介:利用随机不动点指数理论及Banach常微分方程理论的随机结果,证明了关于随机弱内向映射一个随机三解定理.
简介:研究了一致连续广义Φ-伪压缩映射的不动点收敛定理.该定理中不要求Φ(t)为严格递增函数且对实序列的条件做了相应地放宽,从而所得结果推广和改进了已知的结论.
简介:研究了平均非扩张型映射T:‖Tx-Ty‖≤a‖x-y‖+b‖x-Tx‖+c‖x-Ty‖,(x,y∈K,a,b,c≥0,a+b+c≤1)的公共不动点的存在性和唯一性.得到平均非扩张型映射T1和T2满足T1T2=T2T1,则T1T2存在唯一的不动点,并且T1和T2存在唯一的公共不动点.本文结果是近期相关文献结果的推广.
简介:引入了L-空间和L-空间上的KKM类映射,建立了关于该类映射的一些不动点定理,其中包括Schauder型和Fan-Browder型不动点定理.得到了L-空间中的KyFan匹配定理和叠合点定理.