简介:新一代网络环境下,用户与信息之间的交互耦合及其动态演化更加突出,并基于此形成了多样及多变的用户群组和信息群组。为了提高网络信息共享、传输及获取的效率,需要揭示用户与信息间的耦合及演化机制。本研究主要探讨其耦合机制的研究范式,尝试基于社会网理论揭示用户与信息间的耦合影响机制;基于概率图模型及多主体仿真揭示用户与信息间的关联演化机制;基于社会网理论构建用户群组和信息群组的模式识别模型。用户与信息间的耦合及演化机制的揭示,可丰富行为经济学、复杂性科学以及图书情报档案学等领域的相关理论,用户群组与信息群组模式识别模型的构建,有助于提高网络信息的社会化获取及个性化服务的效率。
简介:在经典SIR传染病模型的基础上,根据在线社交网络中谣言传播的特点,将网络谣言的受众用户扩展为无知者、知晓者、信任者、传播者、暂时免疫者和永久免疫者6类.同时考虑到用户会因为不断接触某一相同的谣言而导致对该谣言的信任水平增加的现实情况,引入社会加强正向效应,提出了一个改进的在线社交网络谣言传播模型,并结合复杂网络的相关理论建立了一个考虑聚类系数可变的无标度网络环境进行仿真研究.仿真发现,谣言的传播能力与影响范围会随着社会加强正向效应、用户首次接触并相信谣言的概率、孤立节点密度以及初始传播节点的度的增大而增大,但会随着网络聚类系数的增加而得到抑制.本文提出的谣言传播模型比较符合真实在线社交网络的谣言传播特性,可以为实践中网络谣言的管控提供一定理论参考.