简介:为了研究群结构时空网络中的同步现象,运用线性稳定性分析方法和强耦合极限近似,得到时空网络中群同步的本征值关系、拓扑条件及比值条件,给出了判断时空网络是否能发生群同步的判据,并在具体的一般网络中得到验证。发现了小集团结构的重要性,它们可以决定如何在各个群之间加入连接才能达到群同步以及达到群同步的最好的连接方式。通过观察其中最大的小集团,可以判断群同步发生的临界耦合强度。给出了同步相图,整个时空网络存在5个状态:完全不同步状态(US)、群同步状态(GrS)、群内同步状态(IS)、完全同步状态(CS)和过渡状态。当把两个群构成的网络扩展到多个群,扩展到整个二维时空,可以看到不同的斑图转换,得到网络从完全不同步到完全同步的多种路径。
简介:基于模糊控制思想,研究了新近提出的Liu混沌系统的耦合同步。为了分析比较,首先应用线性时变稳定性理论实现Liu混沌系统的线性耦合同步。然后基于T-S模糊模型重构了Liu混沌系统,并用Lyapunov理论和耦合同步的思想推导了两个重构的Liu系统耦合同步的稳定性条件。本文的模糊耦合同步方法通过LMI方法可以迅速求取可行解,同步条件更加清晰明确、约束条件少,并可以方便地得到不同衰减率α下全局渐近稳定的充分条件。此外,设计的控制器都由线性函数构成,有利于实际应用中构造控制器。良好的仿真结果验证了本文模糊同步方法的有效性,该方法适用于符合广义Lorenz范式(GLCF)的混沌系统。