简介:针对各种连续数字语音信号,实现了一种基于TMS320C5x评价模块(EVM)和定点数字信号处理器ADSP2181的与特定人无关的连续数字语音识别系统。在分析了连续概率密度的隐马尔可夫模型(CDHMM)基础上,利用LPC倒谱系数、LPC差分倒谱系数、能量归一化系数及其差分系数作为语音特征矢量,训练和识别采用Viterbi算法和Baum-Welch重估算法,并利用ADSP2181实现语音识别的算法。有效地提高了系统的识别率。给出了实现各个阶段所需的时间,比较了不同语音特征参数对识别率的影响。在具体实现中,着重处理了抗噪、定点实时实现及连续数字串识别人的身份等问题。实验结果表明,本系统在普通环境下取得较满意的效果,正确识别率达到93.2%,为其实用化提供了较为重要的技术途径。
简介:人脸识别是计算机视觉和模式识别领域的一个活跃课题,有着十分广泛的应用前景。给出了一种基于PCA和LDA方法的人脸识别系统的实现。首先该算法采用奇异值分解技术提取主成分,然后用Fisher线性判别分析技术来提取最终特征,最后将测试图像的投影与每一训练图像的投影相比较,与测试图像最接近的训练图像被系统识别出,图像的比较采用了欧几里德距离,仿真结果表明了该方法的有效性。
简介:语音识别技术近年来得到了飞速的发展并且在越来越多的领域得到了广泛的应用。隐马尔可夫模型(HMM)语音识别技术是一种基于训练数据提供的概率自动构造识别系统的技术,主要用于大量词汇的语音识别,而且具有良好的识别性能和抗噪性能。因此,一般的语音识别系统都采用基于HMM的识别方法作为其基本算法。本文列举了语音识别在教学中的应用示例来分析其基本算法。