简介:随着电力用户的增加,各种电力用户产生的数据,用传统的简单的负荷预测方法难以满足人们对于大数据的分析。大数据时代的来临,在电力系统中不断显现出来的。随着智能电网、通信网络技术和传感器技术的发展,直接导致了电力用户侧数据呈指数式增长,使电力用户侧大数据变得十分复杂。本文主要是针对电力用户侧数据的一些特点提出一些并行负荷预测方法。电力用户侧数据特征有数据数量大、数据结构类型繁多和更新的速度快。电力用户侧大数据在存储处理这些数据上对我们研究这些数据是一个挑战。本文是基于随机森林算法的并行负荷预测方法,通过现代热门的云计算,对影响数据的历史负荷、温度、风速等数据进行并行化分析。