简介:桥梁监测序列是典型的非平稳时间序列,需要进行一些处理将非平稳序列平稳化后再拟合ARMA模型。将监测数据平稳化后将因变量仅对它的滞后值以及随机误差项的现值和滞后值进行回归所建立的模型即为ARIMA模型。以玉峰大桥为例,介绍了季节ARIMA模型的建模思路与总体流程,模拟了检测序列的变化趋势。以季节ARIMA模型为预测模型作为结构的退化模型,对测点进行退化趋势模拟与退化临界时刻预测。结果显示ARIMA模型对序列的拟合效果良好,可以用于桥梁监测序列的预测,其对退化临界时刻的预测可以从整体上掌握桥梁的整体退化趋势和极限使用寿命。
简介:针对桥梁结构监测采集到的桥梁异常状态下长期积累演变的惊人数据量,提出了基于主成分分析与人工神经网络相结合的桥梁结构异常状态识别方法。布设多种类型传感器监测获取高维数据,采用主成分分析法对原始高维特征数据进行预处理,将结构异常特征变量的主成分作为人工神经网络的输入特征。该方法有效的降低了神经网络的结构复杂度,同时提高人工神经网络的训练速度,也保证了人工神经网络具有良好的收敛性和稳定性。应用于江苏南通如泰运河大桥和江苏无锡开源大桥的实际监测数据的结果表明,基于主成分分析的人工神经网络方法用于桥梁结构异常状态识别,与传统的神经网络以及其他模式识别算法相比,有更好的识别精度。