简介:该文分别用直流、脉冲直流和微波等离子体辅助化学气相沉积(PCVD)技术得到了Ti—si—N、Ti—B—N及Ti—Al—si—N纳米复合超硬薄膜,结合微观分析和宏观性能表征,给出了它们的纳米结构特征及其与力学性能的关系,基于工业运用背景,探索了纳米复合薄膜的热稳定性。
简介:在陶瓷、有机绝缘树脂等介电固体材料中,热是通过声子振动传导的。特别在有机绝缘树脂中,声子主要以无定形结构强散射,这使得它们的热导率通常低于陶瓷或金属材料1至3个数量级。具类晶结构的热固性树脂呈微观各向异性,但当保持树脂的宏观各向同性时可提高自身的热导率。研究4种双环氧单体,它们的中间基团为1个二苯基或2个苯甲酸基团,然后用芳香二胺作为固化剂进行热固化。由于中间基团是高有序的,有利于形成类晶结构从而抑制声子散射,热导率最多比常规环氧树脂高5倍。TEM观察直接证明了环氧树脂中类晶结构的存在。这些研究结果提供了1种新型的方法.即通过控制其高有序结构来提高绝缘树脂的热导率。
简介:以进行化学回收为目的,将3种环氧树脂在80℃的4mol/dm^3及6mol/dm^3浓度的硝酸水溶液中分解。以DDM(二氨基二苯基甲烷)固化的双酚F型环氧树用4mol/dm^3浓度的硝酸分解需要400h,用6mol/dm^3的硝酸分解需要80h。DDS(二氨基二苯酮)固化的TGDDM(四缩水甘油二氨基二苯基甲烷)型环氧树脂,以4mol/dm^3浓度的硝酸水溶液分解约需50h,以6mol/dm^3硝酸分解约需15h。由醋酸乙酯萃取硝酸水溶液所得化合物的分析结果表明水解是由于C-N键断裂及硝化所引起。就通常耐酸性较好的酸酐固化环氧树脂而言,如树脂主剂的化学结构中具有C-N键,以甲基纳迪克酸酐固化的TGDDM型环氧树脂以硝酸水溶液分解,用4mol/dm^3硝酸分解约需80h,以6mol/dm^3浓度分解约250h,表明以此方法分解酸酐固化环氧树脂是可行的。由分解生成物的分析结果可以判断,将回收的分解生成物再聚合为目的的话,双酚F型环氧树脂以4mol/dm^3硝酸水溶液分解为优;仅仅是单纯地进行废物处理的话,DDS固化的TGDDM型环氧树脂以6mol/dm^3硝酸水溶液进行分解最适宜。
简介:环氧树脂可作为复合材料的基体树脂或作为粘合剂而广泛地应用于诸如航空和汽车等许多行业。这类聚合物最令人关心的一点就是它们的长期表现。对这类材料的湿气老化研究已有许多相关报道,能在高温下使用的新型改性环氧树脂也是研究热点之一。一般来说,除了在非常苛刻的使用条件下,在100℃以上,环境水对材料的影响可大大忽略,但是材料的气体环境影响,尤其是氧气,通常总是存在,并可能导致其他形式的强度损失。目前已有数篇文章试图解释材料的热降解机理和失重过程,以及强度下降现象。而最为普遍报道的环氧树脂化学降解方式为分子内的失水。vanKrevelen报道称交联点可能是聚合物网络中最脆弱的部分,因此可能导致在热降解过程发生链的解聚而变回到(部分)不交联的原料。为了能更深入的了解此类热降解现象,最近我们着力研究了一种经改性的环氧粘合剂在高温下的行为。