学科分类
/ 1
3 个结果
  • 简介:随机森林是21世纪提出的基于分类树的算法,在处理大数据集中具有明显优势,首度将其应用在降水长期预报中。以长江中下游地区1月份降水预报为例,运用随机森林模型构建原则,在74项大气环流因子以及前期月降水中筛选模型预报因子,进行长期降水量预报,并将其与神经网络模型预报效果进行对比,发现随机森林的泛化误差为13%,预报准确率达到75%,而神经网络的预报准确率仅为67%。此外,本研究还对长江中下游地区的汛期降水量进行了长期预报,结果表明,随机森林模型进行降水量长期预报中模拟和预报的效果令人满意,值得进一步研究和应用。

  • 标签: 随机森林 长期降水预报 等级预报 泛化误差 重要性因子评价 决策树
  • 简介:本文以钟祥市楚商国际产业城电排站基坑工程降水井点为研究对象,从降水模型的选择到井点的设计、布置和施工作了系统介绍,并对其降水效果进行了分析。

  • 标签: 基坑工程 降水模型 经验 井点降水
  • 简介:本文从规避水文风险角度出发,将非参数核密度估计方法与Copula函数相结合,利用核密度估计方法确定水文变量的边缘分布,利用Copula函数计算不同变量之间的联合分布,并应用于南水北调中线一期工程水源地丹江口水库不同分期降雨径流的概率计算与丰枯风险分析.研究结果表明:该流域汛期降雨与径流的组合概率中,丰平枯等级一致的总概率为76%,而非汛期降雨与径流丰平枯等级一致的总概率仅为53.3%.与汛期相比,非汛期降雨与径流等级不一致的概率明显升高.当汛期径流等级为丰时,非汛期径流等级为丰的条件概率达到60.1%;当汛期径流等级为平时,非汛期径流等级为丰、平、枯的条件概率相差不大;当汛期径流等级为枯时,非汛期径流等级为枯的条件概率达到59.8%.

  • 标签: 核密度估计 COPULA函数 降水径流 丰枯组合概率 跨流域调水