简介:摘要:本文聚焦于探讨神经网络在图像识别领域的应用。通过对神经网络技术在人脸识别、物体检测与分类、医学图像分析以及场景理解与分割等具体应用案例的深入剖析,揭示其在提升图像识别精度和效率方面的显著贡献。然而,文章也指出神经网络在数据和计算方面所面临的挑战,并探讨未来发展的趋势与方向,这些研究有望进一步推动神经网络在图像识别中的应用和创新。
简介:摘要:短时交通流预测是智能交通系统(ITS)的关键组成部分,其准确性、实时性直接影响到交通控制与诱导系统能否及时向出行者发布准确的交通信息,对于治理城市交通给拥堵问题具有重要意义。基于神经网络的预测方法是近年来非参数化方法中开展研究做多的,本问详细介绍了BP神经网络和RBF神经网络在交通流预测领域的应用与发展,以及国内外学者对神经网络的优化做出的努力。并提出了一个未来研究的方向即对更为复杂的网络层面上的城市道路进行预测,并拟定了一个解决方案。
简介:摘要:随着科技的不断发展,图像识别已经成为研究的热点领域。深度神经网络作为现代人工智能的重要分支,为图像识别技术的发展带来了革命性的突破。本文旨在研究面向图像识别的深度神经网络模型设计,探讨不同模型的设计方法和优劣,并深入分析其内在机制。通过实验对比和分析不同模型的性能,总结各自的特点和适用场景,为未来的研究和实践提供有益参考。
简介:摘 要:本文主要探究悬臂梁桥施工过程中挠度设计值与实测值之间存在的误差,及如何应用BP神经网络通过已施工阶段的误差值来对未施工节段的误差进行预测。并通过构建BP神经网络模型预测值来实现对桥梁施工进行优化指导,并将此模型应用于汕头市连阳河特大桥悬臂段施工挠度误差模拟预测。实验表明BP神经网络模型在悬臂施工挠度误差预测中精度较高,有较好的效果。并对施工过程中可能造成挠度误差的主要原因进行了分析。
简介:摘要:为了能够及时发现齿轮表面缺陷以及缺陷类型,我们提出了一种自适应分类框架,该框架根据任务需求调整分类粒度,并基于混合神经网络(AHNN)。AHNN结合了一维卷积和注意机制,增强了特征和通道之间的关系,并抑制了不敏感信息的影响,引入了个体特征选择方法,生成适合不同个体的特征子集,减小个体差异。实验结果表明,齿面磨损的细粒度和粗粒度分类的准确率分别为91.27%和96.31%,缺齿的细粒度和粗粒度分类的准确率分别为92.67%和97.28%,正常齿的细粒度和粗粒度分类的准确率分别为92.33%和96.39%。AHNN能够适应不同的分类粒度,降低个体差异,提高框架的通用性。