简介:在丝绸等织物生产过程中,经常会出现织物产生非正常花纹的缺陷。目前对织物缺陷的检测主要是通过人工肉眼判别,该方法花费时间长、人工成本高,会给企业带来较大的经济负担。本文通过使用BP和SAE两种神经网络对织物进行缺陷检测,并判断是何种缺陷:首先介绍了使用BP神经网络对大量样本训练并保存,得到最佳权值,从而实现对于图像的缺陷检测和分类;训练样本通过SAE深度神经网络训练得到重构图像,再不断微调参数,获得最佳的权重数值,运用滤波器过滤噪声,最终得到结果。通过大量的实验,结果表明两种方法对织物缺陷检测均具有非常良好的效果,充分证明了深度神经网络在工业生产织物过程中运用的可行性。
简介:采用Hodgkin-Huxley神经元模型,在二维随机神经网络中引入局部扩散功能缺陷,研究了神经网络中非对称缺陷附近的方形失去扩散功能的缺陷对螺旋波动力学行为的影响.缺陷使螺旋波降低传播速度的行为与缺陷的位置和尺寸有关:靠近螺旋波中心的缺陷影响最为显著,当缺陷远离中心位置时,缺陷的作用明显减弱;缺陷尺寸越大,影响也越显著.同时观察到,在弱耦合神经网络中,缺陷的存在导致了螺旋波的漂移现象.进一步研究缺陷和通道噪声同时存在时系统时空斑图的演化行为,结果发现,噪声作用下缺陷处形成了新的波源.最后,通过分析神经元放电节律和平均膜电位的变化揭示了缺陷对神经网络时空行为影响的机理.