简介:针对无人动力伞在执行任务时常常在低空、城市上空等复杂气流环境飞行,无人动力伞的响应特性受到飞行速度、航向角和各种风的综合影响,具有的非线性和不确定性.导致事先设计的控制规则不再适合,对此基于PID的控制算法难以达到满意的控制效果.本文提出了一种模糊神经网络控制无人动力伞航向控制策略,利用RBF神经网络所特有的局部逼近能力,对模糊控制规则进行在线推理并获得连续输出,采用GA算法对神经网络参数进行调整来实现对模糊控制器规则库的优化和模糊规则的自动生成.使控制器能够进一步适应无人动力伞实时控制中的时变性和不确定性,保持良好的控制性能;仿真表明算法是可行的.