学科分类
/ 1
4 个结果
  • 简介:应用谐波—能量平衡求解了强非线性单摆方程,谐波-能量平衡与经典的摄动和谐波平衡不同,不是把微分方程和初始条件分离处理;而是把微分方程和初始条件同时处理.用谐波平衡,将描述动力系统的二阶常微分方程,化为以角频率、振幅为变量的非线性代数方程组,考虑能量平衡,构成角频率、振幅为变量的封闭方程组求得解析解.谐波-能量平衡将谐波平衡与能量平衡相结合,克服了二者的缺点吸取了二者的优点.实例表明,谐波-能量平衡法方法简单,取较少谐波就可以达到较高的精度.

  • 标签: 强非线性 单摆 谐波—能量平衡法
  • 简介:Flash动漫设计与制作课程的教学是各级各类学校计算机动漫专业的核心课程,要达到"教"和"学"的有机统一,教法的选择是关键因素。而Flash教学中动态电子相册的制作是一个很典型的动画作品制作案例,该案例的制作涉及Flash中多方面的技术应用,有一定的制作难度和挑战性。该文采用问题探究这种新颖的教学方法来进行动态电子相册的制作,学生从中体会到了这种方法的独特性和优越性,收到了很好的教学效果。

  • 标签: 问题探究法 FLASH 应用
  • 简介:主要考虑弯曲变形的细长轴向运动梁,可以作为工程中广泛应用在航天器天线、液体输送管道、汽车驱动带、电梯缆索等的简化机构.对轴向运动柔性梁线性微分方程,采用复模态分析方法导出两端简支和固支边界条件下的固有频率方程;采用Ritz建立轴向运动梁的有限单元模型.基于该模型在多种边界条件下进行梁的横向振动分析,并开展定点激励下激励功率谱的辨识.仿真结果表明,与传统的Galerkin截断方法相比.有限元方法能够克服分析方法的建模困难,对复杂边界梁进行有效的分析,对激励的功率谱能够有效地辨识.

  • 标签: 轴向运动梁 复模态 有限元 复杂边界 功率谱辨识
  • 简介:连接界面的黏滑、摩擦行为不仅是引起结构刚度和阻尼非线性的主要原因,而且是结构无源阻尼的主要来源.Iwan模型能够较好地复现连接界面的黏滑、摩擦行为.本文采用时频域交替(AlternatingFrequency/TimeDomainMethod,AFT)研究含Iwan非线性模型的单自由度振子系统的稳态响应.时频域交替具有频域求解线性系统响应的高效性和时域判断非线性力的便捷性特点,采用离散傅里叶变换和傅里叶逆变换,在频域和时域内分别求解系统响应和对应的非线性恢复力,再反复迭代计算系统的稳态响应.将时频域交替计算结果和中心差分法计算的结果进行对比,并研究激励幅值对系统非线性特征的影响.结果表明,时频域交替计算的结果与中心差分计算的结果具有较好的一致性,且求解效率较高,计算耗时减少50%;随着激励幅值的增加,系统的能量耗散增加,刚度降低,固有频率降低.

  • 标签: 连接 迟滞非线性 Iwan模型 时频域交替法 稳态响应