简介:Curvelet变换用于影像融合能有效保持影像的光谱信息,利于提取影像不同尺度、不同方向的细节特征。为检测Curvelet变换对影像分类的影响,文章首先采用PCA方法、Curvelet变换方法对IKONOS影像进行融合;然后对原多光谱影像和融合影像进行监督分类,分类时采用相同的训练样本;最后运用多种参数对结果进行目视、定量评价。总体结果显示:基于Curvelet变换的融合影像各波段的信息熵以及与原影像的平均结构相似性程度均高于基于PCA的融合影像,原多光谱影像、基于PCA的融合影像和基于Curvelet变换的融合影像的总体分类精度分别为:77.27%、70.00%和80.09%,其中基于Curvelet变换的分类影像的地物边缘光滑度最高。
简介:KL变换是一种适用于任意概率密度函数的正交变换,它能消除各分量之间的相关性.根据协方差矩阵特征值和特征向量有效地进行信息压缩等。相同类的指纹图像的特征码具有较强的相似性.不同类指纹图像的特征码却有一定差异。采用对特征码进行KL变换降维,得到的新的特征码仍然具有同样的相似性和差异性。证明可以通过KL变换后的特征向量进行指纹识别是可行且具有一定意义和研究应用价值。