简介:摘要随着经济和科技水平的快速发展,电力行业发展也十分快速。铁心是变压器的关键构件,假如其在制造环节出现问题,遗留下质量隐患,必定会影响到变压器的性能,对后期的运行状态有着决定性影响,因此必须要加强对其制造过程的控制。从专业角度出发,明确变压器铁心制作工艺流程,总结以往经验确定工艺要点,有重点的来采取措施进行控制,改善以往工艺操作中存在的不足,通过针对性改善来达到最佳制造效果。变压器铁心混合叠片的基本原理是在变压器铁心主级掺杂另外一种型号的硅钢片,如在单位千克试样铁心损耗较高的硅钢片主级中掺杂损耗较低的硅钢片,来降低铁损,确保铁心损耗不会超过规定值。或在单位千克试样铁心损耗较低的硅钢片主级中掺杂损耗较高的硅钢片,根据规定的铁损值来确定掺杂比例,以控制成本。
简介:摘要随着经济和科技水平的快速发展,电力行业发展也十分快速。铁心是变压器的关键构件,假如其在制造环节出现问题,遗留下质量隐患,必定会影响到变压器的性能,对后期的运行状态有着决定性影响,因此必须要加强对其制造过程的控制。从专业角度出发,明确变压器铁心制作工艺流程,总结以往经验确定工艺要点,有重点的来采取措施进行控制,改善以往工艺操作中存在的不足,通过针对性改善来达到最佳制造效果。变压器铁心混合叠片的基本原理是在变压器铁心主级掺杂另外一种型号的硅钢片,如在单位千克试样铁心损耗较高的硅钢片主级中掺杂损耗较低的硅钢片,来降低铁损,确保铁心损耗不会超过规定值。或在单位千克试样铁心损耗较低的硅钢片主级中掺杂损耗较高的硅钢片,根据规定的铁损值来确定掺杂比例,以控制成本。
简介:摘要:本文简述了混合离子交换器 (混床 )内树脂工作原理和混床再生流程 ,笔者在混床调试过程中,针对混床周期制水率低问题进行了原因分析,并制定解决方案,通过现场混床再生步骤的调整优化 ,大幅提高了混床周期制水率。
简介:摘要传输线经历了不同的景观和长期暴露在自然中,它是因此受到自然的影响和破坏现象很容易。闪电已经成为一个巨大的威胁主传输线的安全运行。雷电屏蔽失效意味着雷击传输线绕过避雷针。它是威胁安全性和可靠性的主要因素超高压输电线路。典型的计算方法屏蔽故障引起的跳闸率(SFTR)包括常规方法,电子几何模型(EGM),领导者进展模型(LPM),等等。常规方法是样本,但只考虑塔的保护角度和高度。EMG提供了一个考虑到影响的合理依据结构高度基本上独立于任何关于有吸引力的地面距离的假设。该EGM的缺点是电弧过速率和一些其他相关的电气特性无论如何。LPM是闪电通道向前发展的典范地球是根据放电物理学给出的长气隙。电气的物理评估然而,现场是通过雷电引导进行的,它没有考虑闪电引线的随机性进展,建模结果实际上并没有描述实际的闪电通道。本文提出了一种新的计算方法SFTR,基于EGM并考虑电气特点。使用建议的方法来计算与SFTR相比,500kV传输线SFTR通过EGM和实际的运行率,证明了拟议方法的有效性。
简介:摘要传输线经历了不同的景观和长期暴露在自然中,它是因此受到自然的影响和破坏现象很容易。闪电已经成为一个巨大的威胁主传输线的安全运行。雷电屏蔽失效意味着雷击传输线绕过避雷针。它是威胁安全性和可靠性的主要因素超高压输电线路。典型的计算方法屏蔽故障引起的跳闸率(SFTR)包括常规方法,电子几何模型(EGM),领导者进展模型(LPM),等等。常规方法是样本,但只考虑塔的保护角度和高度。EMG提供了一个考虑到影响的合理依据结构高度基本上独立于任何关于有吸引力的地面距离的假设。该EGM的缺点是电弧过速率和一些其他相关的电气特性无论如何。LPM是闪电通道向前发展的典范地球是根据放电物理学给出的长气隙。电气的物理评估然而,现场是通过雷电引导进行的,它没有考虑闪电引线的随机性进展,建模结果实际上并没有描述实际的闪电通道。本文提出了一种新的计算方法SFTR,基于EGM并考虑电气特点。使用建议的方法来计算与SFTR相比,500kV传输线SFTR通过EGM和实际的运行率,证明了拟议方法的有效性。