简介:摘要:输电线路作为国家电网基础设施建设的重要一环,保障其运行的安全稳定,不仅关系到电力系统的有效运行,更关系到国民经济的持续健康发展。随着电压等级的不断提高,输电线路巡检工作的重要性日益突出。为提高输电线路巡检效率,目前国家电网已大范围采用无人机对输电线路进行巡检。但在巡检过程中,关键部件是否出现故障,需要利用深度学习图像识别技术对无人机巡检采集到的海量图像数据进行离线分析来判断,这一巡检方式虽然识别精度较高,但由于数据采集与检测相分离,因而造成了发现故障的滞后性,因此研究满足边缘计算的关键部件检测算法,在无人机巡检采集图像过程中进行实时的检测是十分必要的。