简介:摘要:电力负荷预测在电力系统规划和运行中具有重要作用。为了提高预测精度,本研究提出了一种基于深度学习的电力负荷预测模型。首先,收集并预处理了历史电力负荷数据及相关气象数据。其次,构建了包含长短期记忆网络(LSTM)和卷积神经网络(CNN)的混合模型,通过特征提取和时间序列分析相结合的方法来进行负荷预测。模型训练过程中,采用了交叉验证和超参数优化技术,以提高模型的泛化能力和稳定性。实验结果表明,相比传统预测方法,本研究所提出的深度学习模型在预测精度和鲁棒性方面均有显著提升。该研究为电力负荷预测提供了一种有效的方法,具有广泛的应用前景。
简介:摘要:考勤系统是很多现代化企业和事业单位用来提高员工积极性的重要方式之一,因此智能化考勤系统的发展在这种市场需求下获得了充分的动力。其中深度学习人脸识别技术是智能化考勤系统的核心技术之一,对于系统识别的准确性和安全性具有重要影响。本文就考勤系统中深度学习人脸识别技术的应用展开了探讨。
简介:摘要:随着工业自动化的快速发展,电机在生产过程中扮演了至关重要的角色,因此电机故障的检测与诊断显得尤为关键。近年来,深度学习技术由于其出色的特征提取和自我学习能力在许多领域得到了广泛应用。本文主要介绍了基于深度学习的电机故障检测与诊断方法。首先,对深度学习的基础知识进行了分析,其中包括深度学习的定义、特点和常见模型,如CNN、RNN和AE。同时,强调了数据准备与预处理在深度学习中的重要性。接着,深入探讨了深度学习在电机故障检测中的具体应用,包括采集电机的工作数据与故障数据,以及特征提取与表示学习的重要性。并对比了不同深度学习模型在电机故障识别中的表现。最后,探索了深度学习模型在电机故障预测中的应用。本文旨在为电机故障检测提供一个新的、高效的方法。
简介:摘要:输电线路作为国家电网基础设施建设的重要一环,保障其运行的安全稳定,不仅关系到电力系统的有效运行,更关系到国民经济的持续健康发展。随着电压等级的不断提高,输电线路巡检工作的重要性日益突出。为提高输电线路巡检效率,目前国家电网已大范围采用无人机对输电线路进行巡检。但在巡检过程中,关键部件是否出现故障,需要利用深度学习图像识别技术对无人机巡检采集到的海量图像数据进行离线分析来判断,这一巡检方式虽然识别精度较高,但由于数据采集与检测相分离,因而造成了发现故障的滞后性,因此研究满足边缘计算的关键部件检测算法,在无人机巡检采集图像过程中进行实时的检测是十分必要的。
简介:摘要:在当前信息化背景下,科学开展深度学习活动,对提升专业技能提高就业质量具有重大的帮助。结合当前配电设备识别技术存在的优点与问题,科学开展创新性实践教学活动,充分发挥配电设备识别技术的资源性作用,提升工作效率与质量,全面彰显自动化技术的工作成效。通过对监测区安装网络摄像技术,可以结合具体监测区域进行数据分析,保证配电设备智能识别技术发挥领航性作用,提升各个工作岗位学习效率与质量,全面增强企业产值提升,提高机械与人工合力工作成效,为企业全面性发展奠定坚实基础。