简介:针对变电一次设备状态监测中普遍存在的异常数据问题,提出了一种基于点排序识别聚类结构(OrderingPointstoIdentifytheClusteringStructure,OPTICS)的状态监测异常数据过滤算法。通过对一次设备状态监测的历史数据进行异常数据特征分析,建立了基于密度聚类的异常数据过滤机制。并以某110kV变电站一次设备变压器油色谱以及GISSF6密度微水实验为例,对该算法的异常数据检测效果进行了验证。该算法与传统异常数据过滤算法的对比试验结果表明,该算法能够准确地识别异常数据的特征,有效过滤状态监测中的异常数据,显著降低噪声干扰,从而提高数据的可靠性。
简介:提出了一种基于模糊优化多目标进化算法(FMOEA)的配电网故障定位新方法。FMOEA对基于排序选择的传统多目标进化算法进行改良,有效避免了其种群早熟的问题,在排序结果中引入模糊优选决策因子,得到本代个体的最终适应度值,之后再经过复制、交叉、变异和迭代等过程,直到满足终止条件得到最终的Pareto解集;最后对适用于故障定位的最优解集处理办法进行了探讨与分析,以便从最优解集中筛选出符合故障情况的唯一解。算例仿真测试针对不同的配电网系统结构,分别模拟系统单点、多点故障,以及信息完备与部分信息畸变的情况,结果表明该算法可以实现配电网故障的:有效定位,通过对比遗传算法,验证了该方法寻找全局最优Pareto解集的有效性及良好的收敛性能。
简介:密码算法分为对称密码和非对称密码,在交换机、路由器的账号配置、远程运维、信息传输的过程中,应用了大量的密码算法用以实现信息的认证性、保密性及不可篡改性。随着密码分析技术的进步和计算机计算能力的提升,比如边信道攻击等新方法的出现,使得如果选取错误的参数配置会大大降低安全协议的安全性,暂时安全的密码算法将会变得不再安全。这时就需要更换算法或者增大算法的参数,来实现密码算法的理论安全。文章综述了在网络设备及协议中常见的密码算法,分析了不同密码算法的安全性,并提出了目前要实现网络安全运维各类密码算法应该如何设置参数,可以作为日常网络运维参数配置的参考依据。
简介:针对电力系统低频振荡问题,在运用阻尼转矩对单机无穷大系统分析低频振荡机理与特点的基础上,对低频振荡经验模态分解时存在的端点效应问题进行了理论分析与改进,提出了一种基于端点优化对称延拓法的有效改进EMD分解边界效应的HHT算法对电力系统低频振荡进行辨识。通过对测试信号进行仿真,同时也利用广域FNET监测系统的测试结果进行低频振荡参数辨识及抑制实验,研究了该算法在模式辨识方面的有效性和准确性。仿真和实验表明,基于改进HHT算法的低频振荡辨识方法能快速高精度地辨识出振荡模态信息,并能有效指导电力系统稳定器PSS的配置及参数设计,从而维持电力系统的安全与稳定。
简介:提出了一种填充粒子群算法(FPSO),用以解决双次级永磁同步直线电机优化设计问题。在有限元分析的基础上,采用支持向量机拟合直线电机结构参数与运行性能参数之间的关系,建立用于优化计算的非参数模型;引入填充函数,对传统粒子群算法进行改进,并采用多峰值函数对算法进行测试,结果表明:FPSO具有良好的快速性和全局收敛性;采用FPSO对电机结构参数进行优化,得到一组最优的电机结构参数。仿真实验表明:采用该算法优化后的电机推力大、推力波动小且峰值电流小,符合电机的优化设计目标。
简介:将Hilbert-Huang变换(HHT)算法和Prony算法相结合进行电力系统低频振荡模式识别。利用HHT算法对实测信号进行经验模态分解,使之分解成处于不同频率的固有模态函数(IMF);然后根据Hilbert变换,分析IMF分量的频率和相位,提取出含主导低频振荡模式的IMF;利用Prony算法对含低频振荡模式的IMF进行分析,提取出低频振荡模态参数,准确识别低频振荡模态。通过算例分析,证明了该方法可提高模态识别的精确性,验证了提取低频振荡模态参数的有效性。