简介:摘要:在网络技术如此发达的时代,人们越来越能够正确的认识以及利用网络给生活带来的便利,网上购物、线上课堂等网络化的生活模式同时印证了这一点,在日常学习生活中,运用科学的思维方法认识事物、解决实际问题的思维习惯和辩证看待问题的能力的培养尤为重要。因此,结合两点,适应时代发展的潮流,将网络与思辨的学习相结合,正是当下的必然趋势。文章根据对现有市场上的社交网络平台的比较分析,结合前期的市场调研结果,总结社交辩论性软件存在的必要性。
简介:摘要:随着经济社会的发展与生活水平的提升,社会生产与公众生活对电力资源的需求不断增加,如何在满足社会对电力资源需求的同时保障自身经济效益最大化成为了火电厂工作人员所要思考的关键问题。锅炉是火电厂重要的热能动力设备,其运行的成效直接关系到火电厂的实际发电能力,因此,在火电厂的实际运行工程中工作人员要对锅炉的运行进行有效的控制与故障预防检测,构建完善的锅炉运行控制系统,加快热能向机械能的转化,在实现锅炉优势更好发挥的同时确保火电厂经济效益的最大化。鉴于此,本文先是阐述了火电厂锅炉运行的实际情况,又详细研究了影响火电厂锅炉运行的主要因素,仅供相关人员进行借鉴与参考。
简介:摘要:在宏观政策引导下,光伏产业将由粗放式发展转向精细化发展的新阶段。在新形势下,我国光伏电站将会进一步加强技术创新,加快提质、降本、增效的步伐,以求尽快地实现全面平价上网或低价上网。充分发挥设计工作龙头引领作用,为智能型光伏电站精细化设计提供技术与理论支撑,在“互联网+”的大趋势下,与其一脉相承的“智能光伏”将再次受到瞩目。
简介:摘要:基于I型广角目镜设计了一种同轴大视场头戴显示器光学系统,采用多个非球面透镜辅助完成设计,使用塑料透镜降低系统重量。在提高成像性能的情况下,实现了小型化、轻量化和低成本的目标,便于商业推广。 关键词:I型广角目镜;头戴显示器;CODEV;虚拟现实技术; 头戴显示器研究现状:当前用于头戴显示系统设计的光学元件主要分为全息元件、光波导器件和自由曲面光学元件。其中,采用自由曲面光学元件进行头戴显示光学系统设计的发展较迅速,现在部分研究采用多个楔形自由曲面棱镜结构,以视场拼接的方式实现了较大的视场角,解决了拼接方案中的人眼视轴和拼接单元光轴不重合的问题,但是自由曲面棱镜结构难以设计、加工制作,不利于商业推广。在已有的商用的虚拟现实头戴显示器的设计中,主要关注视轴中心20°范围内的成像质量,虽然在一定程度上降低了光学系统的复杂程度,减轻了系统的重量,但是当观察20°以外的视场时,图像质量远远不能满足军事训练和娱乐的要求。 本研究达到的科学技术水平:本研究基于传统的I型广角目镜,通过引入非球面面型,设计了一种同轴头戴显示器光学系统,系统由7片透镜组成,实现大视场,大出瞳直径和小F数,像差得到了很好的校正,透镜单元的体积显著减小,结构紧凑,比较同类系统总长缩短了约30% ,实现了整机系统的小型化和轻量化。系统的成像性能满足要求且优于现有设计结果,提高用户使用舒适度与沉浸感,便于商业推广。 技术路线及实验方案: (1)确定系统出瞳直径和出瞳距:人眼仅能清晰地观察视轴20° 以内的物体,通常要求显示器的亮度在经过光学系统后到达人眼时不小于10 。人眼的瞳孔能限制进入人眼的光能量,当处于明亮的环境中时,进入人眼的光能量减少,此时的出瞳直径大小为2~3 mm,当处于较暗的环境中时,瞳孔扩大使进入人眼的光能量增加,一般出瞳直径为6~8 mm。大出瞳直径不仅可以避免用户在观察过程中丢失视场,而且使用者在长时间佩戴时更加舒适,不会感到视觉疲劳。但是出瞳过大不仅会增加光学设计的难度而且会使得光学系统更加复杂,需要增加透镜来进行平衡,这使得系统重量增加,同时会引入过多的杂散光造成鬼像,降低图像质量。综合考虑人眼结构和用户安全、舒适的佩戴等因素后,预计将头戴显示器的出瞳距设置为10mm。 (2)确定系统视场角和焦距:视场角是系统的重要指标,不同的像源显示区域所需要的视场角不同,考虑到人眼的视场角大小,这里设定系统全视场角为78°。采用像源的尺寸为0.77 in,根据半像高和视场角可以计算出系统的焦距8mm(3)(3)光学优化:我们将采用逆向光路设计的方法,以实际系统的出瞳作为设计时的入瞳,以显示器平面作为设计时的像面。以I型广角目镜为初始结构,根据系统设计要求的焦距,利用软件的焦距缩放功能,保证视场角度不变下平衡出瞳直径、系统的总长、透镜的曲率、透镜的间隔等结构参数。同时需要注意凹透镜中心过薄、凸透镜边缘过薄以及边界条件等问题的出现。考虑到现有的加工水平,将在进行结构优化过程中将MNET、MNCT等操作数添加到优化函数中,通过设置合适的变量,在优化函数中加入EFFL操作数和单色像差操作数,保证系统的焦距不变以及控制系统的像差变化,分离三胶合透镜,使光线平滑地通过光学系统。通过设置合适的优化变量,其中前3个为偶次非球面透镜,最后两个为球面透镜。用RAGZ、RAGY等操作数控制透镜的全口径范围内的厚度差异以及透镜的弯曲程度,加入TOTR、DISG、RELI操作函数对系统的总长、相对照度、畸变进行控制,利用REAY操作数控制非球面透镜的半像高,进一步优化系统。由于系统的工作波长为可见光波段,需要考虑色差的校正,因此需在评价函数中加入AXCL操作数,校正近轴轴向色差,利用Zemax的REAY操作数对系统中的最短波长和最长波长进行控制,实现对垂轴色差的控制。通过选取不同的优化变量,用Zemax光学设计软件中的全局优化和局部优化算法进行优化,通过设置合适的权重继续进行优化,直到完成符合设计目标。 经过以上优化设计,系统的像面上的弥散斑均方根很小,可满足成像设计要求;光学系统的畸变为–1.35%,场曲小于0.5mm,满足头戴显示器使用者的需求;系统边缘视场为0.7,满足系统的照度要求;各个视场的MTF曲线分布较为均匀,并且各视场的MTF在40lp/mm均大于0.42,边缘视场质量较好,系统总体质量完全满足虚拟型头戴显示器的要求。在光学系统中引入非球面透镜,使系统的总长缩短了28.4%,透镜的最大直径为29 mm,可以调节瞳间距,实现了系统的小型化、轻量化设计。最终优化后的光学结构,其全视场角为78°,有效焦距为 8mm,该系统的出瞳直径为10 mm,出瞳距离为16 mm,系统总长为38mm,完全可以达到使用者的要求。