简介:Forasemi-supervisedclassificationsystem,withtheincreaseofthetrainingsamplesnumber,thesystemneedstobecontinuallyupdated.Asthesizeofsamplessetisincreasing,manyunreliablesampleswillalsobeincreased.Inthispaper,weusefuzzyc-means(FCM)clusteringtotakeoutsomesamplesthatareuseless,andextracttheintersectionbetweentheoriginaltrainingsetandtheclusterafterusingFCMclustering.Theintersectionbetweeneveryclassandclusterisreliablesampleswhichwearelookingfor.Theexperimentresultdemonstratesthatthesuperiorityoftheproposedalgorithmisremarkable.
简介:Thispaperfocusesontheproblemofautomaticimageclassification(AIC)byproposingaframeworkbasedonlatentsemanticanalysis(LSA)andimageregionpairs.Thenovelframeworkemploysrelativespatialarrangementsforregionpairsastheprimaryfeaturetocapturesemantics.Thesignificanceofthispaperistwofold.Firstly,tothebestourknowledge,thisisthefirststudyoftheinfluenceofregionpairsaswellastheirrelativespatialinformationinlatentsemanticanalysisasappliedtoautomaticimageclassification.Secondly,ourproposedmethodforusingtherelativespatialinformationofregionpairsshowgreatpromiseinimprovingimagesemanticclassificationcomparedwiththeclassicallatentsemanticanalysismethodand2Dstringrepresentationalgorithm.