学科分类
/ 1
2 个结果
  • 简介:对智能交通系统(ITS)短时交通流量预测问题进行研究,提出了一种联合FCM与群集蜘蛛优化SVR交通流量预测算法。首先采用FCM聚类方法对交通流量数据预处理,得到基于时间节点分割的时序数据模块,有效降低了数据差异性带来的误差影响;然后构建基于群集蜘蛛优化SVR模型,针对SVR参数选择难题,在群集蜘蛛优化算法中引入社会等级制度,动态的将蜘蛛种群划分为上中下三个阶层,并根据不同阶层个体适应度大小,分别设计自适应竞争、"快搜"以及逆向学习机制,提高了算法寻优精度;最后,运用群集蜘蛛优化SVR对各个交通流量数据时序模块进行预测评估。仿真结果表明,同其它预测算法相比,该算法预测平均绝对误差降低了38.4-53.8%。

  • 标签: 交通流量预测 模糊C-均值聚类 支持向量回归(SVR) 群集蜘蛛优化
  • 简介:对无线传感器网络(WSNs)弱稀疏性事件检测问题进行研究,提出了一种基于并行离散群居蜘蛛优化算法和压缩感知的WSNs稀疏事件检测方案。该方案采用压缩感知(CS)技术进行稀疏事件分析检测,针对事件向量稀疏度未知的特性,设计基于MPI框架的并行离散群居蜘蛛优化算法(PDSSO),重新定义蜘蛛编码方式和自适应迭代进化机制,给出并行转移策略,并将PDSSO应用于CS重构算法中;针对观测字典难以满足约束等距条件的特点,对稀疏矩阵和测量矩阵进行奇异值预处理操作,在保持稀疏度不变的基础上提高了算法重构性能。仿真结果表明,与GMP等检测方法相比,该方案有效提高了WSNs稀疏事件检测成功率,降低了误检率和漏检率。

  • 标签: 无线传感器网络 稀疏事件检测 压缩感知 离散群居蜘蛛优化算法 并行处理