简介:天波超视距(0TH)雷达系统中,为了获得较高的多普勒分辨率,通常会采用长的相干积累时间,但对于机动目标,长相干积累时间会导致回波的多普勒展宽,不利于检测。对于弱目标,由于其能量低,容易被强目标掩盖,加大了检测难度,针对这一问题,提出一种基于目标运动参数估计的0THR机动弱目标检测方法。利用遗传算法优越的参数估计性能这一特点,采用遗传算法估计各目标的运动参数,并引入“clean”算法的思想,在时域上逐个减去强目标,以消除强目标的掩盖效应。又考虑到遗传算法的运算量较大,进一步提出采用时频分析算法估计各参数范围,减小遗传算法的运算量。仿真结果表明,与已有算法相比,文中算法具有更高的参数估计精度和弱目标检测性能。
简介:为有效提高反舰导弹动目标检测性能,利用分数阶Fourier变换(FRFT)对线性调频(LFM)信号良好能量聚集性的特点,提出了基于FRFT的末制导雷达海面微动目标检测方法。首先,针对舰船目标的不同运动状态,分别建立目标平动(匀速和匀加速)以及三维转动(横滚、俯仰和偏航)模型,得到动目标回波的多普勒和微多普勒频率,在短的观测时间范围内,可近似建模为LFM信号。其次,通过计算雷达回波信号在不同变换阶数下的FRFT,形成二维参数平面,在此平面内,采用非参量恒虚警检测器形成自适应门限,并进行动目标判决。最后,仿真分析了算法的性能和影响因素。
简介:极化是雷达目标具有的特性之一。以电磁散射计算仿真的圆锥形弹头模型、球形和圆柱形诱饵模型为研究对象,在极化不变量理论基础上对这些简单目标的极化特性进行了试验分析研究,提出了一种新的组合极化不变量特征(功率矩阵迹与行列式的比值)用于雷达目标识别,并给出了其对应实际的物理意义。文中以SVM为分类器,提出基于功率矩阵迹、去极化系数和功率矩阵迹与行列式的比值特征进行分类识别,结果表明,该方法可以有效地将弹头和诱饵进行分类识别。
简介:在当前基于粒子滤波的检测前跟踪(PF—TBD)算法中,通常是利用累积似然比去检测目标,由于能量累积的效果,无法快速检测到目标的消失。针对这个问题,提出了一种新的基于似然比的检测前跟踪方法。该方法运用单个时刻的似然比进行目标有无判别,并结合多个连续时刻的判别结果给出最终的目标检测结果。仿真结果表明,与传统的基于似然比的弱目标检测前跟踪方法相比,该方法能够减小目标出现时的检测延时,并且能够有效地检测到目标消失。