简介:目的:通过对志愿者观看3D影片之后的脑电信号进行主成分分析,选取最能代表立体视觉疲劳度的主成分,运用BP神经网络对疲劳等级进行建模,提高对疲劳度等级的预测准确度。方法:采集15名志愿者观看五部不同3D影片前后的脑电信号,先对脑电信号进行疲劳度分级并选取特征通道;再对特征通道的脑电信号进行主成分分析选取影响最大的特征主成分,利用BP神经网络进行建模,根据建立的模型对立体视觉引起的疲劳等级进行预测,将预测结果与已知的疲劳等级进行对比。结果:根据文献中的疲劳等级将实验结果分成三个等级;据累计贡献率超过90%选取的前四个主成分建立的预测模型,准确度达95.4%。结论:运用主成分分析和BP神经网络的方法对立体视觉疲劳度进行预测,预测准确度较高,与直接根据脑电特征参数建立模型的方式相比简便和准确,这一方法对立体视觉引起的疲劳度分级及预测提供了新的思路。
简介:小世界是一种以较低的连接和能量成本实现高效的信息分离与整合的网络结构,而人脑网络具有显著的小世界特性。在弥散张量成像(diffusiontensorimaging,DTI)脑网络的研究中,如何有效地量化和评估网络的小世界属性依然是研究中存在的一个关键问题。在研究文中,我们首先概括了已有小世界属性评估指标及其存在的问题,随后提出了一种新的基于网络全局效率和局部效率的小世界属性评估指标。为了验证该指标的有效性,我们基于75个中老年人的DTI脑网络对其进行了应用与评估。与传统指标相比,该指标对研究对象的年龄变化更敏感,并与多项认知评估量表的结果存在显著相关。网络节点随机化和网络失连接这两种攻击测试的结果也表明,新指标在DTI脑网络的研究中具有较高的准确性和稳定性。
简介:随着“互联网+”概念的普及,网络上的资源随之成倍增长.面对庞大的数据资源,传统的搜索引擎Baidu、Google等已经不能满足人们对于特定信息的获取需求.作为搜索引擎抓取数据的重要组成部分,网络爬虫的作用非常重要.本文主要介绍了网络爬虫的概念、组成模块以及工作流程,在通用爬虫的基础上提出一种聚焦型网络爬虫系统,以python和相应的第三方库为主要工具,通过定义采集函数和给定豆瓣网最新上映电影的网址,快速搜索该网址某电影的影评信息,对页面内链接和外链接进行有效爬取.然后,再对获取到的数据进行分词处理,根据关键词的出现频率生成词云.实验结果表明,该聚焦型爬虫系统能够将所有影评信息以JSON格式存储到本地,并通过词云直观的展示出来.
简介:2018年4月12日,工业和信息化部、公安部、交通运输部三部委联合印发《智能网联汽车道路测试管理规范(试行)》(以下简称《管理规范》)。据此,各省、自治区、直辖市相关主管部门可以根据当地实际情况,制定实施细则,具体组织开展智能网联汽车道路测试工作。《管理规范》提出申请道路测试的测试主体需要提供其在封闭道路、场地等特定区域进行实车测试的证明材料,同样前期北京、上海、重庆三地发布的智能网联汽车(也称“自动驾驶车辆”)道路测试管理方法中也规定了类似的要求。由此可见,在国内政策管理规范中,封闭场地的技术试验与安全性测试评价是智能网联汽车上路测试必不可少的环节。
简介:LDA主题模型是文本挖掘领域的重要算法,同时在推荐系统当中也有不错的表现.通过LDA主题模型挖掘用户感兴趣的主题,是目前最常用的用户兴趣主题挖掘方法之一.为了提高LDA主题模型应用在推荐系统时的推荐质量,我们提出了一种基于负样本进行学习的方法negLDA.通过创造出负样本来学习用户对物品的负面预测评分,同时结合正样本学习得到的正面预测评分,从正反两个方面进行综合评测,从而更加精确地衡量出用户对物品的预测评分.通过在MoviesLens-100k、MovieLens-1M、FilmTrust这三个数据集上的实验,表明所提出的算法在精确率、召回率、AUC三个指标上相比传统算法均有一定改进.