简介:航空材料检测研究中心(以下简称检测研究中心)隶属于中航工业北京航空材料研究院,专门从事金属、非金属材料的分析检测,各种航空材料分析检测技术的研究及推广,提供对外的第三方检测服务,是中航工业失效分析中心、中航工业检测及焊接人员资格认证管理中心、中国商飞机械失效分析中心运行机构所在部门。检测研究中心下设无损检测研究室、化学检测研究室、力学性能研究室、失效分析与物理检测研究室和机械加工厂,占地面积约1.3万平方米,员1300余人,其中,研究员10余人,高级工程师30余人,技师及高级技师30余人,仪器设备等固定资产1.3亿元,检测设备先进,检测技术完备,具有高水平的材料性能检测和综合评定能力以及完善的管理体系。对社会开放、与国际接轨。
简介:基于d-电子合金设计理论和JMatPro软件,运用正交试验,设计了具有较低弹性模量和较高强度且含有无毒元素Nb、Mo、Zr和Sn的新型生物医用∥钛合金Ti-35Nb-4Sn-6Mo-9Zr,并对该合金的显微组织和力学性能进行分析。结果表明,Ti-35Nb-4Sn-6Mo-9Zr合金在800。C下固溶处理后,由单一的β等轴晶构成。与Ti-6Al-4V相比,该合金具有较优越的力学性能:E=65GPa,σb=834MPa,σ0.2=802MPa,6=11%,有望成为新型种植材料。该方法可以有效地降低实验次数,并得到理想的实验结果。
简介:对航空发动机用封严橡胶材料进行模拟工况下可磨耗性的研究。结果表明:可磨耗性模拟试验和实际工况下的磨损行为非常相似;封严橡胶材料在不同试验条件下有不同的磨损形貌和磨屑形态。研究中出现了3种典型的磨损形貌:在线速度(m·s^-1)/入侵速率(μm·s^-1)/入侵深度(μm)为100/5/1000的试验条件下,出现具有明显刮痕的磨损形态;在100/400/1000的试验条件下,出现沙丘状的磨损形态;在275/100/1000的试验条件下,呈现出鱼鳞状倒刺的粗糙磨损形态。3种典型的磨屑形态分别为:在100/100/500试验条件下为细小粉末状的典型磨屑;在100/275/1000试验条件下磨屑呈2—3mm长的搓泥状;在275/100/1000试验条件下出现了有一定长度的条状或不规则片状的磨屑。
简介:通过磁化学熔体反应法在7055(Al-3%B)?Ti反应体系中成功制备TiB2/7055复合材料。利用XRD、OM和SEM等分析检测技术研究复合材料的相组成和微观组织。结果表明,脉冲磁场作用下生成的TiB2颗粒呈多边状或近球形,尺寸小于1μm,均匀分布于基体中。与未施加脉冲磁场的复合材料相比,施加磁场后α(Al)晶粒平均尺寸从20μm减小到约10μm,第二相从连续的网格状分布变为非连续性分布。在磁场作用下,复合材料的抗拉强度从310MPa提高到333MPa,伸长率从7.5%提高到8.0%。此外,与基体相比,在载荷为100N,磨损时间为120min时,复合材料的磨损量从111mg降低到78mg。
简介:对一种用于嗜酸性氧化亚铁硫杆菌液氮冷藏新型保护剂GP的保藏效果进行研究。依据最大细胞复苏率及最高亚铁氧化活性确定该新型保护剂的最佳使用浓度。结果表明,保护剂的最佳浓度为30%,在此浓度下细胞复苏率达到84.4%,且能在120h内完全氧化培养基中的亚铁,培养6d后菌体浓度达到5.8×107cell/mL。此外,解冻细胞在9K培养基中培养6d后,对活细胞复苏的最佳GP残留浓度为0.6%(体积分数)。在此浓度下,菌株DC完全氧化亚铁需要108h,并且最终菌体浓度为6.8×107cell/mL.因此,GP是一种简单、有效的嗜酸性氧化亚铁硫杆菌液氮保藏的冷冻保护剂。
简介:基于PRASAD提出的传统的二维加工图理论,建立考虑应变的三维加工图,描述功率耗散系数和流变失稳区域随应变速率、温度和应变的变化。三维加工图说明了材料的内禀可加工性,而有限元分析方法可得到材料在特定工艺条件下应力、应变、应变速率及金属流动情况,说明了由模具形状和工艺条件决定的应力状态可加工性。基于此,提出一个新的由材料驱动的热变形可加工分析方法,联合考虑有限元和三维加工图,可以说明整个热加工过程的材料可加工性(包括应力状态可加工性和内禀的可加工性)。通过此方法,研究难变形金属镁合金的热锻过程,包括复杂热锻直齿锥齿轮的三维热力耦合有限元和三维加工图的集成模式。基于得到的研究结果,成功进行了热锻试验。试验表明新的方法用于确定最佳工艺参数是合理的。
简介:采用光学显微镜和场发射扫描电镜,研究超声波对原位Mg2Si/Al复合材料中初生Mg2Si形态的影响。研究结果表明:超声波处理使初生Mg2Si的晶粒尺寸从150μm降低到20μm,初生Mg2Si形态发生改变。在二维形貌中,未实施超声波振动处理的初生Mg2Si晶粒生长为含有空腔的粗大颗粒,共晶组织生长于其中,相应的三维形态为含有漏斗状空腔的八面体和十四面体。超声波处理后的初生Mg2Si晶粒变成细小、实心三维形态的颗粒,颗粒棱角已发生钝化效应。