学科分类
/ 1
17 个结果
  • 简介:CVD金刚石不含任何金属或非金属添加剂,机械性能兼具单晶金刚石和聚晶金刚石(PCD)的优点,而又在一定程度上克服了它们的不足。大量实践表明,焊接型CVD金刚石工具的使用寿命大大超过聚晶金刚石工具,有几乎相同的硬度和耐磨性,其抗冲击性优于单晶金刚石膜。因此,CVD金刚石被认为是非铁材料加工业中最理想的工具材料。据预测,在二、三年内,CVD金刚石工具将逐步代替天然金刚石工具以及目前已使用了二十多年的PCD工具,从而大大提高生产效率,降低生产成本。

  • 标签: CVD金刚石 切削工具 应用 性能
  • 简介:本文从CVD膜生长的基本条件和制备的常用装置方面介绍了CVD金刚石的制备技术,详细阐述了CVD金刚石及其刀具的特性和在实际中的具体应用。

  • 标签: CVD金刚石 制备技术 特性 应用
  • 简介:尝试用热丝化学气相沉积工艺(HFCVD)在铁衬底上合成金刚石。通过喷嘴向铁衬底上喷射源气体,可在大气压下合成金刚石。金刚石晶粒尺寸在180分钟内可生长到约20μm。用本工艺合成的金刚石只含有少量非金刚石碳。同铁衬底的情况一样,喷射源气体也有利于硅片上的金刚石合成。

  • 标签: 热丝化学气相沉积 铁衬底 金刚石 源气体喷射
  • 简介:CVD金刚石可以用各种方法合成,其中晶粒生长速度最快的则为热等离子体CVD工艺。我们试验室过去曾试图用DC等离子体CVD工艺合成金刚石厚膜,并就膜与基底的附着强度和膜的性质作过探讨。但是,热等离子体工艺存在沉积面积和膜质量都不如其它CVD工艺等问题。CVD金刚石薄膜应用中对扩大沉积面积有着强烈的需求。本研究试图通过控制沉积压力、输入功率等沉积参数扩大等离子体直径,以沉积出大面积金刚石薄膜。我们的目的是利用热等离子体CVD工艺沉积出生长速度高、面积大且膜厚均匀的金刚石薄膜。同时探讨了合成条件对金刚石薄膜形状的影响。本研究得出的结果如下:(1)随着沉积压力的降低,金刚石晶粒尺寸减小,成核密度增加。金刚石的结晶性则几乎不受沉积压力的影响。(2)随着等离子体电流的增加,金刚石晶粒尺寸减小,成核密度增加。增加等离子体电流也可改善金刚石的结晶性。(3)降低沉积压力和增加等离子体电流均可扩大等离子体射流,但是金刚石沉积面积的变化并不明显。(4)随着沉积压力的降低和等离子体电流的增加,金刚石的结晶性均会增加。降低沉积压力和增加等离子体电流有利于改善金刚石薄膜的均匀性。

  • 标签: 工艺 合成金刚石 沉积 合成 成核密度 结晶性
  • 简介:以维生素C为还原剂和覆盖剂,在水溶液中制备铜纳米颗粒,并研究其催化性能。研究不同维生素C浓度对铜纳米颗粒尺寸的影响。采用紫外-可见光分光光度计、扫描电子显微镜(SEM)、透射电子显微镜及傅里叶变换红外光谱计(FTIR)对所制备的铜纳米颗粒进行表征。结果表明,随着维生素C浓度的增加,铜纳米颗粒的尺寸减小。维生素C在防止纳米颗粒氧化和团聚过程中起重要作用,可帮助纳米颗粒在应用过程中保持较高的稳定性。所制备的铜纳米颗粒在PMS氧化丝氨酸过程中表现出优良的催化活性。铜纳米颗粒的催化活性随颗粒尺寸的减小而提高。铜纳米颗粒有望用于催化和环境修复领域并发挥重要作用。

  • 标签: 铜纳米颗粒 维生素C 丝氨酸 PMS 氧化 动力学
  • 简介:采用加压浸出从钼钴废催化剂中分离钼,在原料摩尔比Na2CO3/Mo=1.3,浸出温度150℃的条件下,钼的浸出率达90%.浸出液经酸化处理后采用N235萃取回收,在有机相为20%N235-10%异辛醇-煤油的条件下,经4级萃取钼的萃取率可达到99.6%.反萃液经酸沉回收钼,产品钼酸铵质量较好.本工艺流程简单、有价金属回收率高、对环境友好.

  • 标签: 钴钼废催化剂 加压浸出 萃取 钼酸铵
  • 简介:催化燃烧传感器用于可燃气体分析,广泛应用于国民经济各领域。针对Nemoto公司生产的NC-170S催化燃烧传感器的情况进行了失效分析,包括寿命数据分析、外观检查、X-Ray分析、SEM/EDS分析等。结果表明:传感器的主要失效模式为铂丝应力断裂、催化剂硅中毒、电极硫化物腐蚀。针对这些失效模式提出了相应的改进措施,主要对生产加工工艺和软硬件设计进行了改进,并通过1年的质量跟踪证实改进措施有效,降低了产品故障率,提升了产品可靠性。

  • 标签: 催化燃烧传感器 失效分析 应力断裂 硅中毒 硫化物腐蚀
  • 简介:采用沉淀和水热合成方法制备还原氧化石墨烯负载氧化钴纳米催化剂.采用XRD、Raman光源、SEM、TEM、氮气吸附、UV-Vis、XPS和H2-TPR等测试手段对所合成的催化剂进行表征.结果表明:颗粒尺寸均一的钴氧化物纳米颗粒均匀地分散在还原氧化石墨烯表面,所合成的材料具有较大的比表面积和均一的孔径分布.采用连续流动固定床微反-色谱装置对所合成的杂化催化剂对一氧化碳氧化的催化性能进行研究后发现,含还原氧化石墨烯质量分数为30%的催化剂具有最高的催化活性,能实现一氧化碳在100℃时的完全氧化.

  • 标签: 还原氧化石墨烯 氧化钴 催化剂 一氧化碳氧化 催化性能
  • 简介:使用氯化锌和精氨酸作为反应物,通过简单的微波水热技术制备花状纳米氧化锌。利用X射线衍射(XRD)和扫描电镜(SEM)对所合成的纳米氧化锌进行晶体结构和形貌的表征。通过拉曼光谱和光致发光(PL)光谱对纳米氧化锌的光学性能进行研究,证实了合成物为高结晶度的纳米氧化锌。在紫外光辐射下,合成的ZnO光催化降解亚甲基蓝(MB)有较好的效果,紫外光催化2h后亚甲基蓝的降解率达到95.60%。ZnO光催化降解亚甲基蓝可以描叙为一级动力学反应,降解速率常数在1.0675~1.6275h-1的范围中,这与所合成的ZnO形貌有关。

  • 标签: 纳米ZNO 微波水热法 光致发光 光降解
  • 简介:对于有机卤代物的电化学还原,银基纳米催化剂显示出优异的催化活性。采用简单的化学还原法制备Ag-Ni纳米颗粒(NPs),并采用X射线衍射、紫外-可见光谱、透射电镜以及能量散射谱等方法对制备的纳米催化剂进行表征。采用循环伏安法、计时电流法以及电化学阻抗谱在有机介质中研究Ag-Ni纳米颗粒对苄氯还原的电催化活性。结果表明:Ni元素的加入可明显减小Ag-Ni纳米颗粒的尺寸,使苄氯的还原峰电位φp正移且增加Ag-Ni纳米颗粒的催化活性。然而,当Ni的含量大于一定值后,Ag-Ni纳米颗粒的催化活性反而降低。同时,对Ag-Ni纳米颗粒的协同催化效应进行探讨。

  • 标签: Ag-Ni合金纳米颗粒 苄氯 协同催化效应 电化学还原
  • 简介:德国《Metal》杂志连续刊登了C·哈格吕肯博士的长篇文章《汽车催化剂的回收利用》,详细介绍了世界,尤其是欧洲及德国对队汽车催化剂铂族金属的应用、报废、回收、处理,再利用的现状以及对其循环链全流程的调研思考,对我国目前汽车催亿剂铂族金属的回收、处理、利用有一定的参考价值、原文较长,这里只能掬其一点,从一个侧面谈谈外国汽车催化剂铂族金属回收利用对我们的启示。

  • 标签: 汽车催化剂 回收利用 铂族金属 国外 METAL 参考价值
  • 简介:2008年8月15目,国务院关税税则委员会下发的一则通知将铝企业的神经再一次揪紧。通知指出,白2008年8月20日起,我国将对一般贸易项下出口的铝合金(税号:76012000)征收出口暂定关税,暂定税率为15%。一石激起千层浪。

  • 标签: 产业升级 再生铝 关税 催化剂 铝企业 委员会
  • 简介:利用蒸发诱导自组装技术,用液晶为模板制备有序介孔氧化钛(OMPT),探讨影响亚甲基蓝(MB)氧化降解效率的主要因素,包括MB的初始浓度、pH值和催化剂浓度。结果表明,所获得的OMPT具有二维六方介孔结构,粒径小,比表面积大,表现出高的热稳定性,这些都导致其比催化剂P25和溶胶-凝胶法制备的纳米氧化钛颗粒(NPT)有更高的降解效率。在MB浓度5mg/L、pH6和OMPT浓度1.5g/L的条件下,MB的降解率最快。总有机碳(TOC)分析表明,OMPT在240min内实现了对MB的完全矿化,其速率常数高于P25和NPT的。

  • 标签: 二氧化钛 有序介孔 液晶模板 亚甲基蓝 降解
  • 简介:金属有机骨架材料(MOFs)是一种重要的功能材料,通过原位电化学合成方法在离子液体1-丁基-3-甲基咪唑氯盐作为模板剂的条件下合成MOF-5(IL)(Zn4O(BDC)(BDC=1,4-苯二甲酸)。π-π堆叠作用、离子键和配位键的相互作用使得MOF-5(IL)形成球状结晶。分析结果表明:通过电化学法在离子液体中合成的MOF-5(IL)比传统溶剂热法合成的MOF-5表现出更好的结晶性和更高的热稳定性。循环伏安曲线显示该电化学合成反应是一个扩散控制的不可逆过程。对甲基橙的降解实验表明,MOF-5(IL)独特的结构特征可以提高BiOBr的光催化活性。因此,MOFs材料可以取代贵金属来提高卤氧铋的光催化性能。

  • 标签: MOF-5 离子液体模板剂 原位电化学合成 BiOBr 光催化
  • 简介:在聚丙烯氰基炭纤维上电沉积Ni-Fe合金催化剂,并采用X-射线衍射和拉曼光谱方法考察其对热处理炭纤维石墨化的催化性能。结果表明:Ni-Fe合金在低温条件下对炭纤维石墨化有着优异的催化性能。附有Ni-Fe合金(铁的质量分数为57.91%)的聚丙烯腈基炭纤维经过1250℃热处理后其石墨化度为69.0%,而空白样炭纤维经过2800℃热处理后其石墨化度仅为30.1%。在相同温度下,Ni-Fe合金对碳纤维石墨化的催化性能优于纯铁和纯镍的,这表明Ni和Fe元素之间存在协同催化作用。同时,研究表明Ni-Fe合金对石墨化的催化遵循溶解再析出机理。

  • 标签: 镍-铁合金 电沉积 石墨化度 碳纤维