简介:TheeuropiumionsdopedMMoO_4(M=Sr,Ba)nanophosphorsweresuccessfullysynthesizedviaafacilehydrothermalmethodusingisopropanol.Therelationshipbetweenphosphorcrystallinephase,morphology,photoluminescentpropertiesandhexadecyltrimethylammoniumbromide(CTAB)concentration,pHvalueinprecursorsolutionwasinvestigated.TheresultsindicatedthatthemorphologyandphotoluminescentpropertieswerestronglyinfluencedbyCTABconcentrationandpHvalueinprecursorsolution.InSrMoO_4:Eu~(3+)hosts,thephosphorsurfacetendedtobecomesmootherastheconcentrationofCTABwasincreased;whileparticlestendedtoagglomerateasincreasingpHvalue.TherelativeintensityratioofchargetransferbandtoEu~(3+)characteristicemissionpeaksofMMoO_4:Eu~(3+)(M=Sr,Ba)waschangedasCTABconcentrationandpHvaluechanged.TheemissionspectraofMMoO_4:Eu~(3+)(M=Sr,Ba)couldbeadjustedbyCTABconcentrationandpHvalueduetotheirimpactsonthestructure.ItwasimportantthatthedifferentmorphologiesandphotoluminescentpropertiesofMMoO_4:Eu~(3+)(M=Sr,Ba)couldbeobtainedbythefacilehydrothermalmethodandmodulatedbychangingCTABconcentrationandpHvalue.
简介:Tobreakthroughthebottle-neckofquantumyieldinupconversion(UC)core-shellsystem,weelucidatedthattheenergytransferefficiencyincore-shellsystemhadanevidentcontributionfromthechargetransferofinterfacewithrelatedtotwofactors:(1)bandoffsetsand(2)bindingenergyareadensity.Thesetwovariablesweredeterminedbymaterialintrinsicpropertiesandcore-shellthicknessratio.Wefurtherunraveledthemechanismofnon-radiativeenergytransferbychargetransferinduceddipoleattheinterface,basedonaquasi-classicalderivationfromF?rstertyperesonantenergytransfer(FRET)model.Withstablebondingacrosstheinterface,thecontributionsonenergytransferinbothradiativeandnon-radiativeenergytransfershouldalsobeaccountedtogetherinAuzel'senergytransfer(ETU)modelincore-shellsystem.Basedonthediscussionaboutinterfacebonding,bandoffsets,andformationenergies,wefiguredoutthesignificanceofinterfacebondinginducedgapstates(IBIGS)thatplayedasignificantroleforinfluencingthechargetransferandradiativetypeenergytransfer.Theinterfacebandoffsetswereakeyfactorindominatingthenon-radiativeenergytransfer,whichwasalsocorrelatedtocore-shellthicknessratio.Wefoundthattheenergyareadensitywithrelatedtocore/shellthicknessratiofollowedthetrendofBoltzmansigmoidalgrowthfunction.Bythephysicaltrend,thisworkcontributedareferencehowthemulti-layeredcore-shellstructurewasformedstartingfromtheverybeginningwithinminimumsize.Aroutewaspavedtowardsasystematicstudyoftheinterfacetounveiltheenergytransfermechanismincore-shellsystems.