简介:AstochasticmodelfordailyprecipitationsimulationinChinawasdevelopedbasedontheframeworkofa′Richardson-type′weathergeneratorthatisanimportanttoolinstudyingimpactsofweather/climateonavarietyofsystemsincludingecosystemandriskassessment.ThepurposeofthisworkistodevelopaweathergeneratorforapplicationsinChina.Thefocusisonprecipitationsimulationsincedeterminationofotherweathervariablessuchastemperatureisdependentonprecipitationsimulation.AframeworkoffirstorderMarkovChainwithGammaDistributionfordailyprecipitationisadoptedinthiswork.Basedonthisframework,fourparametersofprecipitationsimulationforeachmonthat672stationsalloverChinaweredeterminedusingdailyprecipitationdatafrom1961to2000.Comparedwithpreviousworks,ourestimationfortheparameterswasmadeformorestationsandlongerobservations,whichmakestheweathergeneratormoreapplicableandreliable.Spatialdistributionsofthefourparametersareanalyzedinaregionalclimatecontext.Theseasonalvariationsoftheseparametersatfivestationsrepresentingregionaldifferencesarediscussed.Basedontheestimatedmonthlyparametersat672stations,dailyprecipitationsforanyperiodcanbesimulated.A30-yearsimulationwasmadeandcomparedwithobservationsduring1971-2000intermsofannualandmonthlystatistics.Theresultsaresatisfactory,whichdemonstratestheusefulnessoftheweathergenerator.
简介:对1988、1994、1995年3个高温年份南京市区260万自然人群中563例重症中暑病例与逐日气象因素作了多元逐步回归分析。以发病当日平均气温x1、最高气温x2、相对湿度x3、平均风速x4、日照时间x5和降水量x6等6个气象因素以及这些因素与发病前1~5天的2~6天平均值M11~M15、…、M61~M65共36项因素作为自变量;以重症中暑总例数作为应变量。筛选结果:x1、x3、M12、M32四项对Y有显著贡献。由标准回归系数可见,x1较xX3,M12较M32贡献大。连续3日的平均气温M12及相对湿度M32较x1、x3对日重症中暑人数影响要大。当M12超过30℃且M32超过73%易出现中暑。这结果在1997年做了初步应用验证。