简介:利用SPOT全色波段影像和LandsatETM+多光谱影像,采用波段特征分析法和改进的最佳波段指数法确定最佳融合波段。选择具有代表性的HSV变换、Brovey变换、PCA变换、Gram-schmidt变换和小波变换方法进行影像融合。针对融合后的影像采用定量评价法进行质量评价,通过不同地物的光谱、空间和纹理信息等进行比较分析构建适当的分类特征和规则,采用面向对象的遥感分类方法进行分类。结果表明,波段特征分析法和改进的最佳波段指数法结合,可以获得最佳融合波段。各融合方法均有效提升了影像效果,其中HSV和GS变换融合方法更好地保持了影像的多光谱和高分辨率特性,融合后各地物特征分类明显,可以有效应用于湿地分类;采用主成分分析法来设置面向对象分类中的波段权重,可以利用各波段信息量的差异进行影像的分割。基于各种遥感指数的面向对象分类方法用于湿地分类获得了93.62%的分类精度,与传统的分类方法相比有了很大进步,在湿地分类中具有很大的应用潜力。