简介:摘要:全球导航卫星系统(GNSS)是一种高度精确、连续、全天候和近实时微波技术,其中GPS的应用最为广泛,目前GPS已经能够达到毫米级的平面坐标定位精度,这种优势能够大大缩减人工测量的时间,提高效率,但是由于GPS所测高程和我国工程测量中使用的高程基准面不同使得GPS高程测量值的应用受到限制。针对将GPS高程测量值通过拟合方法转换为工程坐标下的正常高的研究有着广泛的实用价值。本文采用目前流行的BP神经网络法对测区范围内GPS所测得的大地高数据进行拟合,基于GPS测量得到已知点坐标和高程异常,建立两者之间的神经网络关系,并对网络进行训练,根据预测值和实际值之间的差异对网络中的权值和阈值进行重复计算修改,最后使得预测与实际值之间的误差满足要求,计算外符合精度并对未知点的高程异常值进行预测。通过MATLAB实现BP神经网络高程拟合并与多项式曲面拟合方法进行精度比较,最后得出BP神经网络拟合精度高且相比于多项式曲面拟合法具有准确性,可靠性和稳定性。
简介:摘要:在建筑工程估价中,人们利用传统的计算工具来计算工程造价,已经不能适应信息化迅速发展的时代,人们迫切需要一种新的方法来代替原来的传统的计算方法。一个有经验的预算师或者估算师,根据某个工程的类别、特征,参照已建工程的数据资料,运用某种方法就能较准确地计算出该工程的造价,误差比较小,这种专家的大脑思维方式值得我们学习。本文引入人工神经网络中的bp网络模型,介绍该模型工程估价的计算过程,指出该模型可对不同情况的工程造价进行合理的预测,并能取得良好地效果,为工程估价带来巨大变化。
简介:摘 要:本文主要探究悬臂梁桥施工过程中挠度设计值与实测值之间存在的误差,及如何应用BP神经网络通过已施工阶段的误差值来对未施工节段的误差进行预测。并通过构建BP神经网络模型预测值来实现对桥梁施工进行优化指导,并将此模型应用于汕头市连阳河特大桥悬臂段施工挠度误差模拟预测。实验表明BP神经网络模型在悬臂施工挠度误差预测中精度较高,有较好的效果。并对施工过程中可能造成挠度误差的主要原因进行了分析。
简介:摘要:本文重点研究基于神经网络技术的电力变压器故障诊断方法。变压器是电力系统中不可或缺的核心设备,其运行状态的监测和故障诊断对于确保系统安全稳定运行至关重要。传统的故障诊断方法存在诸多缺陷,难以满足实际需求。神经网络由于其强大的非线性映射能力和自学习优化能力,在模式识别和故障诊断领域展现出巨大的潜力。文中首先介绍了变压器常见故障类型及其特征量提取方法,然后重点阐述了基于人工神经网络、自编码神经网络、卷积神经网络等在变压器故障诊断中的应用,并对这些方法的优缺点进行了分析比较。最后,对神经网络在变压器故障诊断领域的发展趋势进行了展望。
简介:摘要:针对单通道振动信号输入不能全面表达结构损伤特征信息问题,提出基于多通道一维卷积神经网络的结构损伤识别方法,融合多传感器振动信号信息,直接从原始振动信号中自主提取学习结构损伤特征,实现对结构损伤模式的识别。通过简支梁数值模拟对所提方法进行验证,结果表明:所建立的多通道一维卷积神经网络模型(1D-CNN)能够准确地识别结构的损伤位置和损伤程度,且具有一定的抗噪能力。
简介:摘要:目前,PID控制方法由于其算法简单,易于实现的优点已经被广泛应用于各种控制领域。但涡喷发动机转速控制系统为非线性系统,传统PID控制在非线性系统中的表现并不良好。因此采用模糊控制来弥补传统PID控制无法在线调参的不足。为进一步提高模糊PID控制系统的性能,有学者将遗传算法和BP神经网络应用于模糊控制中,虽然解决了难以将控制参数调至最优的问题,但仍存在训练时间长的问题。本文采用模糊神经网络控制方法,很好地解决了模糊控制和神经网络单独使用时的弊端,提高了PID控制系统的性能。利用Simulink仿真将3种控制系统应用于ECU控制系统进行仿真,结果显示模糊神经网络PID的系统稳定时间最快,超调量最小,在遇到干扰时鲁棒性最好。