简介:通过分析ZigBee协议中Cluster—Tree和AODVjr算法的优缺点,提出一种基于Cluster—Tree+AODvjr的优化路由算法。该算法利用ZigBee协议中的邻居表,通过定义分区来确定目的节点的范围,从而控制广播RREQ分组的跳数,防止无效的RREQ泛洪。此优化算法能够有效地减小路由跳数,缩短传输时延,减少网络中死亡节点的数量,提高数据传送的成功率。
简介:传统的生物医学命名实体识别方法需要大量的标注数据样本,但是在实际应用中标注样本代价高昂。为降低生物医学命名实体识别对标注样本的需求,本文提出通过使用PU学习中的两步法方法,将生物医学命名实体识别问题转化为PU场景下的命名实体识别问题。在第一步中分别使用1-DNF、Spy、NB和Rocchio算法在未标注数据中抽取强负例,然后在已有的正例数据和强负例数据的基础上构建隐马尔可夫模型,最后对待分类数据进行命名实体识别。在GENIA语料库上的实验结果显示,在标注数据较少的情况下,通过使用PU学习方法的两步法构建分类模型,其性能显著优于直接使用标注数据构建的分类模型,同时降低了人工标注数据的成本。