简介:根据结构力学与卡尔曼滤波相模拟的理论,构造了一种新的用于连续系统参数识别的广义卡尔曼—布西滤波计算格式.该算法运用了结构力学中的串联子结构拼装方法,在每一步子结构拼装的同时嵌入对系统状态和参数的估计以实现系统参数的识别,可以离线计算的数据都通过精细积分算法预先获得。
简介:用数值模拟的方法,研究了Host-Parasitoid模型.该模型是一类非线性离散系统,反映了在一定的时间和空间内,寄生虫和寄宿主之间的生存状态.通过调节各种影响下的分岔参数,可以观察到系统具有周期泡,倍周期分叉,间歇混沌和Hopf分岔等复杂非线性动力学现象,揭示了系统通向混沌的途径.利用不同周期遍历下的奇怪吸引子和具有分形边界的吸引盆对系统的非线性特性进行了深入的探讨.最后利用参数开闭环控制法对系统的混沌状态进行了有效的控制.数值仿真和理论分析表明,选择相应的控制参数可将该系统的混沌状态控制到不同的稳定周期运动.
简介:介绍了一种实数快速傅里叶变换(FFT)的设计原理及实现方法,利用输入序列的对称性,将2N点的实数FFT计算转化为N点复数FFT计算,然后将FFT的N点复数输出序列进行适当的运算组合,获得原实数输入的2N点FFT复数输出序列,使FFT的运算量减少了近一半,很大程度上减少了系统的运算时间,解决了信号处理系统要求实时处理与傅里叶变换运算量大之间的矛盾.同时,给出了在TMS320VC5402DSP上实现实数FFT的软件设计,并比较了执行16,32,64,128,256,512,1024点实数FFT程序代码与相同点数复数FFT的程序代码运行时间.经过实验验证,各项指标均达到了设计要求.
简介:研究了不确定参数的Lorenz系统和Rossler系统的异结构同步问题.基于Lyapunov稳定性理论,采用主动同步,自适应同步两种方法实现异结构混沌系统的同步,并且利用数值模拟来阐释理论的有效性.