简介:研究了非完整约束Appell-Hamel例.证明了经典Appell-Hamel例对于非完整系统的Hamilton作用量是稳定值.研究了该约束对于非完整力学Rosen-Edelstein模型的解,证明了对于三个非完整力学模型Ap-pell-Hamel例具有相同解.利用非完整力学系统可归结为有条件的完整系统的理论,得出了经典Appell-Hamel例具有第二类Lagrange方程的形式.
简介:研究了非高斯列维噪声作用下非线性系统的渐近线性化方法和Lyapunov指数.利用渐近线性化方法将非线性系统线性化,通过系统的响应轨迹验证了该方法的有效性.通过广义的伊藤法则公式,推导出了列维噪声驱动下Lyapunov指数的一般表达式.给出当参数变化时,非线性系统的随机稳定性分析.
简介:研究松弛状态下的非圆截面弹性螺旋细杆,即带有原始曲率和挠率的非圆截面弹性杆的平衡稳定性问题.基于Kirchhoff动力学比拟,建立用欧拉角表达的弹性杆动力学方程.忽略线加速度引起的微小惯性力,仅考虑截面转动的动力学效应,使欧拉方程封闭.证明松弛状态下的非圆截面螺旋杆无论在空间域或时域均满足一次近似意义下的Lyapunov稳定性条件.从而为螺旋形态弹性细杆存在于自然界中的广泛性和稳定性作出理论解释.提示负泊松比材料的螺旋杆可能不稳定.
简介:研究了地震作用下非线性地基中桩基的3次超谐波共振问题.从地基桩中抽象出力学模型,考虑地基的非线性因素,运用Hamilton变分原理建立了桩基的非线性控制方程.利用Galerkin方法离散上述方程,基于多尺度摄动法研究了地震作用下非线性地基中桩的3次超谐波共振问题.以某嵌岩圆形桩为例,研究了地基土层厚度、剪切波速度及频率比对地震力的影响,数值模拟了非线性地基桩的3次超谐波共振响应,探讨了地震力、地基弹性及非弹性系数对超谐波幅频响应的影响,最后研究桩基产生3次超谐波共振时的时间历程曲线.结果表明,当地震波频率约等于桩基固有频率的1/3时,容易激发桩的3次超谐波共振响应;桩基的3次超谐波共振响应随着地震力、非弹性系数的增大而变得更加显著,随着弹性系数的增大而逐渐变小.
简介:熵在描述随机系统的演变、不稳定性、无序性或混乱程度以及信息传递方面起着重要的作用.本文对非高斯噪声驱动的一类耗散动力系统的信息熵演化进行了研究,文中通过线性变换的方法简化了所研究系统的FPK方程,然后根据Shannon信息熵定义推导出了该耗散动力系统随时间演化信息熵的精确表达式,最后分析了非高斯噪声和系统耗散参数对系统信息熵的影响.
简介:在Goodwin与Puu的宏观经济思想基础上,得到了一个推广的非线性动力学经济周期系统.首先用数值方法研究了此系统在特定参数条件下的全局分岔行为.然后结合最大Lyapunov指数,详细讨论了系统在分岔过程中动力学特征的转变.通过分析分岔图形发现在某些参数区间内倍周期分岔导致了混沌;在混沌区域内嵌有多个周期窗口;"加速数"值的增加可以促进经济的周期性运动.最后介绍了分岔和混沌分析得到的动力学性质对理解经济波动的应用.
简介:运用Bell多项式定理研究了一个(2+1)维AKNS方程的可积性,得到双线性方程、Backlund变换以及运用Backlund变换求得其孤子解,最后运用Bell多项式得出Lax对.
简介:为了满足空间探测任务的要求,需采用轻质的伸杆机构支撑各类探测载荷远离卫星本体以避免平台剩磁对空间测量信息的干扰,而挠性伸杆的弹性振动会耦合影响到卫星本体,从而降低卫星本体的姿态控制精度.考虑到挠性附件振动的复杂性及其对航天器本体的耦合影响,采用最优指令整形抑制挠性伸杆的低阶模态振动,并在本体控制中设计自适应扰动抑制滤波器进一步抵消挠性伸杆的残余振动对本体的干扰作用.仿真结果表明,此复合振动控制方法可显著的提高此小卫星的姿态控制精度.
简介:根据Rumyantsev提出的Poincaré—Chetaev变量下的广义Routh方程.用无限小变换的方法研究它的对称性与守恒量,得到守恒量存在的条件和形式.该结果比以往的Poincaré—Chetaev方程的相关结论更一般.最后.举例说明结果的应用。