简介:研究了不确定参数的Lorenz系统和Rossler系统的异结构同步问题.基于Lyapunov稳定性理论,采用主动同步,自适应同步两种方法实现异结构混沌系统的同步,并且利用数值模拟来阐释理论的有效性.
简介:考虑水平轴风力发电机组齿轮箱弹性支撑的柔性连接特性,基于集中质量思想和拉格朗日方法,建立风力发电机传动系统多体动力学模型,研究了齿轮箱弹性支撑对传动系统结构动力学特性的影响.利用动力学模型和模态分析方法,得到了由弹性支撑耦合到系统后的模态频率,并获取了在该模态激励下的模态动能分布.采用变参数方法进行传动系统模态对齿轮箱弹性支撑刚度变化的敏感性分析,利用模态叠加法进行齿轮箱体的动响应分析.数值求解结果和分析表明,考虑齿轮箱弹性支撑的传动系统某阶固有频率即为弹性支撑下齿轮箱体振动主模态;弹性支撑线刚度对传动系统低频率固有模态存在一定影响;齿轮箱体振动分析时应考虑1阶和2阶的低频模态较为合理.本研究工作对传动链系统方案可靠性设计和抑制传动链振动的加阻控制提供了一定理论基础.
简介:为了协调高速铁道车辆的运动稳定性与曲线通过性能之间的矛盾,本文采用多目标优化方法对一种高速铁道车辆的关键悬挂参数进行了优化处理.采用多体动力学技术建立了某型高速铁道车辆62个自由度的动力学模型,模型考虑了轮轨接触几何非线性、轮轨蠕滑非线性和阻尼非线性等.采用ADAMS—Matlab联合仿真对车辆悬挂系统进行参数化改造,使弹簧刚度和阻尼系数均可调.采用基于遗传算法的多目标优化方法对悬挂参数进行优化,使车辆模型能同时满足3种动力学指标.对比优化前后模型的动力学性能可以发现:模型的运动稳定性和曲线通过性能得到显著提高,虽然运行平稳性有小幅降低,但仍能保持在优良的工作状态.
简介:基于一个特殊的Painleve-Backlund变换和多线性变量分离方法,分析了(2+1)维非线性广义Borer-Kaup(GBK)系统,求得了该系统具有若干任意函数的变量分离严格解.根据得到的变量分离严格解,并通过选择解中的任意函数,引入恰当的局域函数和多值函数,找到了GBK系统一种新的具有实际物理意义的半包局域相干结构,如海洋表面波,并简要地讨论了这种半包局域相干结构的一些特殊的演化性质.结果表明:这种半包局域相干结构相互作用后,完全保持它们原有的速度、波形和波幅,即它们的演化性质是完全弹性的.
简介:研究了Lufie广义系统基于状态观测器的控制器设计问题.通过使用Lyapunov稳定性理论,线性矩阵不等式方法,分别给出了状态反馈控制器和观测器的设计方法,并建立了分离原理,进而得到了基于观测器的控制器设计方法.所得结论对广义系统理论本身的发展和实际应用都有非常重要的意义.最后给出了仿真实例.
简介:建立随机风作用下高速列车动力学参数的可靠性优化设计方法.首先考虑自然风的脉动特性,采用Cooper理论和谐波叠加法模拟随车移动点的脉动风速,给出随机风作用下高速列车非定常气动载荷的计算方法.然后建立高速列车车辆系统动力学模型,计算高速列车的运行安全性,并基于可靠性理论,给出随机风作用下高速列车失效概率的计算方法.在此基础上,以高速列车动力学参数为优化设计变量,以失效概率和轮轴横向力为优化目标,采用多目标遗传算法NSGA—II进行动力学参数的自动寻优,建立随机风作用下高速列车动力学参数的可靠性优化设计模型.经可靠性优化计算,高速列车的失效概率由原始的0.4884降低为0.1406,轮轴横向力由原始的45.13kN降低为43.01kN.通过优化高速列车动力学参数可以显著改善随机风作用下高速列车的运行安全性.
简介:用一个分段线性单峰映射描述了二次映射Feigenbaum吸引子的数学结构,证明了存在一个周期2n的正则Fμ-圈嵌套序列,由其生成的吸引的极小Cantor集与单边符号空间的一个所谓"加法器"拓扑共轭.对现有结果作了若干补充和简化证明.