学科分类
/ 1
4 个结果
  • 简介:提出了一个新的加速增长的加权网络模型.与以前的边权固定模型或边权局部分配模型相比,该模型允许流被全局更新,并给出度、边权、与点强度分别服从幂律分布.特别地,这些幂律指数是非普适的而且依赖于两个网络参数.该模型还指出点强度高度依赖于度并且它们之间服从幂律关系,这与许多的实证研究结果相符.数字仿真验证了理论预测的正确性.

  • 标签: 加权演化网络 边权全局演化 加速增长的网络 幂律分布
  • 简介:滚动轴承的故障信号往往是微弱的周期信号,而混沌振子对特定频率的微弱周期信号十分敏感,可以有效地检测出故障信号.介绍了混沌振子的数学模型和基本检测原理,以及策动力临界阈值的确定方法.将混沌振子检测法应用于滚动轴承外圈、内圈和滚动体故障信号的检测中,通过输出相图的变化来判断故障信号是否存在,有效地实现了对滚动轴承故障信号的检测.

  • 标签: 混沌振子 滚动轴承 不变矩 微弱信号 故障特征提取
  • 简介:对具有重根的广义特征值问题,采用基于快速Fourier变换的方法进行求解,实现重根辨识.文章中采用多次单点初始激励的方式,仿真计算测点上的自由振动响应,对响应进行快速Fourier变换后得到频域数据.而后对频域数据分析,得到固有频率和多组测点振型数据.根据单频和重频处的振型特性,引入振型的余弦相似度为判别参数,辨识重根.数值算例表明,该方法可有效实现重根辨识,同时特征值的计算能达到较高精度.

  • 标签: 广义特征值问题 重根辨识 快速Fourier变换法 固有频率 动力学响应
  • 简介:根据三维混沌系统Lorenz吸引子和Chen’s吸引子线性部分的系数特征,构造了一个三维非线性动力系统,并研究了其混沌动力学特征,包括相轨迹图、最大Lyapunov指数、Lyapunov指数谱和Poincare映射,这些特征都表明,该系统具有混沌吸引子。

  • 标签: 混沌反控制 三维混沌系统 LYAPUNOV指数 POINCARE映射