学科分类
/ 1
4 个结果
  • 简介:从连续介质力学中关于弹性薄板的变形理论出发,讨论绕作大范围运动的弹性薄板的动力学性质.由于在无大范围运动的情况下,弹性薄板的变形对系统的动力学性质影响很小而被忽略,而其一旦与大范围运动耦合,对系统的动力学性质产生明显的影响.根据弹性薄板的应变-位移几何非线性关系,建立了作大范围运动弹性薄板的几何非线性动力学方程,然后利用Garlerkin模态截断方法建立了该系统的离散动力学方程,仿真计算验证了理论分析的正确性,从而表明了系统的横向振动是稳定的.

  • 标签: 高速转动 薄板 刚-柔耦合 几何非线性
  • 简介:对近20年来国内外在公路桥梁动力冲击系数方面的研究进展进行了回顾.首先介绍了动力冲击系数的概念.然后,分别从试验研究和数值模拟两方面介绍了相关的研究进展和成果,并详细讨论了不同参数对动力冲击系数的影响.接着,介绍了世界各国规范中动力冲击系数的取值规定.最后,总结了该领域已取得的一些重要进展,并探讨了该课题可以进一步研究的方向.

  • 标签: 车桥耦合作用 动力冲击系数 现场试验 数值模拟
  • 简介:本文对移动车辆作用下桥梁系统的振动能量俘获进行了研究.将车辆模型简化为车轮--弹簧--阻尼器--簧上车身质量体系,桥梁简化为对边简支对边自由板模型,压电俘能结构采用粘贴有压电晶体材料的悬臂梁并在其末端附加一质量块.对于这个耦合动力学模型,首先,通过板壳振动理论推导出了移动车辆作用下板的运动微分方程;其次,根据欧拉伯努利梁振动理论和基尔霍夫第一定律得到了以桥梁振动响应作为激励的悬臂梁动力学--压电耦合方程;最后,对耦合运动微分方程进行了求解并对其数值模拟结果进行了分析.结果表明:采用设计的压电俘能结构可以有效地收集桥梁系统的振动能量,而压电装置的位置、压电梁的厚度、集中质量、车辆速度对压电俘能效率都有一定影响.

  • 标签: 振动响应 俘能 压电 桥梁
  • 简介:首先利用哈密顿原理,将桥梁结构振动微分方程转化为哈密尔顿正则方程形式,然后将精细积分思想的算法引入到辛算法中,形成辛精细积分算法.在时间微段上,将非齐次项正弦/余弦化,得到了荷载识别的辛精细积分格式.与传统Runge-Kutta方法及荷载识别的精细积分格式相比,仿真算例表明本文算法不仅提高了识别精度,而且在长期定量计算中保持了辛算法的稳定性,计算结果不受积分步长的影响,因此可通过增大积分步长,缩短仿真时间,提高计算效率.

  • 标签: 荷载识别 桥梁结构 哈密尔顿系统 辛精细积分 移动荷载 Runge-Kutta方法