学科分类
/ 2
37 个结果
  • 简介:构造6节点形单元,适合于平面薄膜自由振动的有限元分析.文中采用面积坐标,给出单元的形函数,根据哈密顿原理建立薄膜自由振动方程,推导其单元刚度矩阵和单元质量矩阵.3个典型算例表明,6节点形单元的计算结果比ANSYS形单元更接近理论解,具有更高的精度.

  • 标签: 平面薄膜振动 有限元分析 6节点三角形单元
  • 简介:利用有限元方法,分析了风速、攻、导线分裂、磁场力和防舞装置等各种因素对导线舞动的影响.结果表明:风速、攻和导线分裂等对导线舞动的影响很大;磁场力的影响很小.为减轻和防止导线舞动,在导线距离杆塔1/3和2/3处施加压重,可以获得明显的防舞效果.

  • 标签: 输电导线 三维有限元 导线舞动 攻角 导线分裂 振动现象
  • 简介:以一种平面自由度可控挖掘机构为例,运用拉格朗日方法建立了机构的刚体动力学模型,求解得到了各主动杆的系统广义力;进而针对其半闭环控制系统的控制策略进行研究,基于机构驱动元件.交流控制电机及其驱动器的数学模型,运用模糊算法设计了一种模糊-PID双模控制器并对其进行仿真分析.结果表明:基于模糊算法的控制器在超调量、调节时间、上升时间和抗干扰能力等方面均具有较好性能,满足系统的控制要求.

  • 标签: 多自由度可控机构 挖掘机 动力学 模糊-PID控制
  • 简介:分析动力学与分析结构力学在数学理论上是一致的.振动与结构力学问题,其实只是一个符号之差,分析力学方法对两方面可通用.双曲型偏微分方程与椭圆型偏微分方程也是差一个符号.虽然性质不同,但分析上有共同之处.本文提出在有限元分析方面,不用对时间、空间分别离散而是组成混和的时空混和有限元网格.数值结果表明,时空混和有限元是有前途的.

  • 标签: 分析结构力学 时空混和元 双曲型偏微分方程 多尺度
  • 简介:研究了由功能梯度材料制成的薄壁圆柱壳的自由振动.采用幂律分布规律描述功能梯度材料沿厚度的梯度性质,根据Donnell壳体理论,导出了功能梯度材料薄壁圆柱壳线性振动的简化控制方程.基于此理论分析了功能梯度圆柱壳的自由振动特性,给出了两端简支功能梯度材料薄壁圆柱壳小挠度固有振动的频率公式.以简支圆柱壳作为算例,与前人结果及有限元法对比验证了该简化功能梯度薄壁圆柱壳理论的正确性,同时讨论了周向波数及梯度指数对其频率的影响.

  • 标签: 功能梯度材料 薄壁圆柱壳 线性振动 简化理论
  • 简介:分析力学历来是在动力学范围内论述的,结构力学与最优控制模拟关系的共同基础就是分析力学.这表明在结构力学与最优控制理论的架构内也应有分析力学的整套理论.本文就结构力学讲述分析力学,称分析结构力学.保守体系可用Hamilton体系的方法描述,其特点是保辛.保辛给出保守体系结构最重要的特性.有限元法是从结构力学发展的,有限元的单元刚度阵应保持对称性,其实这就是保辛.根据区段单元变形能只与其两端位移有关,就可通过数学分析得到Lagrange括号与Poisson括号,展示了其辛对偶体系、正则方程、正则变换等的内容.

  • 标签: 分析结构力学 有限元 保辛 正则变换 动力学 分析力学
  • 简介:非均匀单参数(Winkler)地基和双参数(Pastemak)地基上自由梁的刚体模态与梁体一土体间的相互作用有关,当约束或支承不影响梁的平动和转动时,相应的刚体模态则会出现.刚体模态的频率和振型随的地基的不均匀性和基床系数的变化而变化.基于哈密顿原理和变化运算,获得了考虑周围土体支承影响的双参数地基梁振动特性,并分析了不均匀地基上自由梁的广义刚体模态频率及其随地基不均性的变化规律.

  • 标签: 双参数地基 自由梁 刚体模态 不均匀性
  • 简介:建立了双参数弹性地基上的正交异性矩形薄板自由振动位移函数微分方程,并得到其一般解.这可用以精确地求解板在任意边界条件下的自由振动问题.以四边固定的正方形板为例进行了分析,计算过程简单,便于实际应用.亦适用于求解单参数弹性地基和各向同性板情形。

  • 标签: 弹性地基 自由振动 正交异性板 频率
  • 简介:研究了粘弹性夹层圆板的自由振动特性.基于经典弹性薄板理论和Kelvin-Voigt粘弹性本构方程,建立了粘弹性夹层圆板振动控制方程.采用分离变量法导出了粘弹性夹层圆板的自然频率及振型解析表达式,计算了固支和简支粘弹性夹层圆板的自然频率,并与有限元计算结果进行比较;讨论了粘弹性夹层圆板的夹心层比率对自然频率及衰减系数的影响.研究表明:(1)随着夹心层厚度的增大,系统频率先增大后减小,高阶时该趋势表现更为明显;(2)随着夹心层厚度的增大,衰减系数一直增大,高阶时该趋势表现更为明显.

  • 标签: 粘弹性夹层圆板 自由振动 Kelvin-Voigt 分离变量法
  • 简介:对旋转粘弹性夹层梁的非线性自由振动特性进行了分析.基于Kelvin—Voigt粘弹性本构关系和大挠度理论,建立了旋转粘弹性夹层梁的非线性自由振动方程,并使用Galerkin法将偏微分形式振动方程化为常微分振动方程.采用多重尺度法对非线性常微分振动方程进行求解,通过小参数同次幂系数相等获得微分方程组,并通过求解方程组及消除久期项来获得旋转粘弹性夹层梁非线性自由振动的一次近似解.用数值方法讨论了粘弹性夹层厚度、转速和轮毂半径对梁固有频率的影响.结果表明:固有频率随转速增大而增大,随夹层厚度增大而减小,随轮毂半径的增大而增大.

  • 标签: 旋转粘弹性夹层梁 Kelvin—Voigt 非线性振动 多重尺度法 近似解 固有频率
  • 简介:首先弹性矩形薄板的动力学方程表示成为Hamilton正则方程,然后采用辛几何方法对全状态相变量进行分离变量,并利用得到的共扼辛正交归一关系,求出四边固支弹性矩形薄板的固有频率和振型的解析解表达式.由于在求解过程中不需要事先人为的选取挠度函数,而是从弹性矩形薄板的动力学基本方程出发,直接利用数学的方法求出可以满足四边固支边界条件下薄板的固有频率和振型的解析解表达式,使得问题的求解更加理论化和合理化.此外,还给出了计算实例来验证本文所采用的方法以及所推导出公式的正确性.

  • 标签: 弹性矩形薄板 四边固支 自由振动 HAMILTON正则方程 固支边界条件 固有频率
  • 简介:失重作用可能在空间中构造理想的球形液滴,它在空间流体科学、空间材料合成等中均有应用.在轨操纵中共振可能引起液滴的变形而影响实验质量,了解液滴晃动特性对空间实验的设计和避免与支撑结构的共振都有帮助.用瑞利-里兹法研究了失重液滴的自由晃动问题,给出了液滴自由晃动的频率和模态函数.可利用表面上的动力学条件研究自由液滴的晃动特性,但由于耦合系统复杂,往往用能量法加以研究.该方法作为一种能量法,可为进一步研究失重环境中的液滴和支撑结构的耦合振动问题提供可行的途径.

  • 标签: 瑞利-里兹法 晃动 自由液滴
  • 简介:基于改进的KBM法,研究了强非线性多自由度自治系统的内共振.求出了极限环的振幅和近似解的表达式.与KBM法比较,该方法的特点是:近似解中包含项中的不再是时间的线性函数,而是时间的非线性函数,它能提高近似解的精度,且应用更广,最后给出一个具体实例,得到了近似解以及相图.和数值结果比较,本文方法具有较高的精度.

  • 标签: 强非线性多自由度自治系统 内共振 近似解
  • 简介:电磁场节点有限元法因未强加电场散度为零的条件而一直受到伪解出现的困扰.本文针对电磁共振腔问题,给出在频域的Maxwell方程表达式.通过引入Lorentz条件,推导出电磁共振腔二类变量和类变量的变分原理,由此提出了新的电磁共振腔节点有限元法,避免了伪解的出现.最后用子空间叠代法求解了共振腔的本征值问题.数值算例表明本文方法是有效可行的.

  • 标签: 电磁波 有限元 共振腔 本征值 子空间叠代法
  • 简介:发展型偏微分方程混和有限元的求解往往需要变动的维数,不符合传递辛矩阵群固定维数的限制.本文按变分法的进一步发展的思路,推导了运用虚功原理解决不同维数传递辛矩阵群连接的原理.数值例题表明了方法的有效性.

  • 标签: 发展型偏微分方程 混和有限元积分 传递辛矩阵 不同维数的连接
  • 简介:提出了非线性多自由度系统的一种新的参数识别方法,研究了二次非线性的2-自由度系统.基于保守系统存在能量积分的特点,由系统的运动微分方程导出了哈密尔顿函数,并用它作为参数识别的数学模型.利用系统自由振荡条件下相坐标测量值集合对系统的哈密尔顿函数进行拟合,并用最小二乘法进行参数识别.不管系统非线性度的强弱如何,只要系统是保守的,这种方法就有效.

  • 标签: 非线性多自由度系统 参数识别 哈密尔顿函数
  • 简介:根据弹性薄板自由振动问题的基本方程,把问题引入到哈密顿对偶体系中.x方向模拟为时间,选取弯矩,等效剪力,转角和挠度为对偶向量,得到了在不同边界条件时关于x轴对称和反对称时的解析解.算例研究了四边固支薄板的自由振动情形,从而推广了哈密顿体系的应用范围,验证了哈密顿体系求解方法在自由振动问题中的有效性.

  • 标签: 哈密顿体系 自由振动 矩形薄板 一般解 不同边界条件 振动问题
  • 简介:为研究斜拉桥中索与梁、索与索之间的耦合振动问题,建立了斜拉桥的单梁-多索力学模型.考虑索的初始垂度引起的几何非线性因素的影响,将多索梁模型分段处理,基于索、梁经典的面内振动的微分方程,通过索、梁连接处的动态平衡条件,建立多索梁模型面内振动理论.以双索梁为例,应用分离变量法,结合边界条件,求解双索斜拉梁模型平面内自由振动的特征值问题.同时,建立双索梁的有限元模型,有限元所得结果与本文理论研究吻合良好.最后对CFRP索梁模型的各项相关重要参数进行分析,并将本文理论与课题组前期成果进行对比分析.研究表明,CFRP索能极大改善双索梁模型的基本动力学性能.增大拉索轴向刚度能明显提高模型的低阶频率,而梁弯曲刚度的提高对其高阶频率的提高比较明显.

  • 标签: 多索梁 模态分析 CFRP索 频率 有限元
  • 简介:使用有限元传递矩阵法分析了某大长径比弹箭的固有振动特性,成功求得了其固有振动频率和振型函数,计算结果得到试验验证.该方法兼备有限元法建模方便、应用范围广和传递矩阵法应用灵活、矩阵阶次低、计算速度快的优点,易于分析复杂变截面结构弹箭的振动特性,并且可直接利用商业有限元软件得到该方法仿真所必需的质量矩阵和刚度矩阵.

  • 标签: 大长径比弹箭 固有振动特性 有限元传递矩阵法
  • 简介:主要考虑弯曲变形的细长轴向运动梁,可以作为工程中广泛应用在航天器天线、液体输送管道、汽车驱动带、电梯缆索等的简化机构.对轴向运动柔性梁线性微分方程,采用复模态分析方法导出两端简支和固支边界条件下的固有频率方程;采用Ritz法建立轴向运动梁的有限单元法模型.基于该模型在多种边界条件下进行梁的横向振动分析,并开展定点激励下激励功率谱的辨识.仿真结果表明,与传统的Galerkin截断方法相比.有限元方法能够克服分析方法的建模困难,对复杂边界梁进行有效的分析,对激励的功率谱能够有效地辨识.

  • 标签: 轴向运动梁 复模态 有限元 复杂边界 功率谱辨识