学科分类
/ 2
35 个结果
  • 简介:基于有限元基本理论,用ANSYS软件对(P/FGM/P)型的带压电层的功能梯度材料悬臂板的结构进行了模态分析,这里选用SHELL99单元类型.给出(P/FGM/P)型的带压电层FGM悬臂矩形板的振动模态图,得到固有频率,并且对前8阶模态做模态分析,讨论了其对结构的动力学行为的影响.通过模态分析可以得知带压电层FGM悬臂矩形板的模态振型有横向振动,扭转振动,拉伸振动,横向振动以前两阶模态为主,分析结果对系统的结构设计与优化以及振动特性研究提供了有效的依据.

  • 标签: 功能梯度材压电材料 悬臂板 ANSYS 模态分析
  • 简介:以飞行器机翼作为工程背景,将机翼简化为悬臂板模型,研究了受横向电压激励、基础激励、面内激励联合作用下复合材料层合悬臂板的非线性动力学问题.首先建立其动力学模型,考虑冯-卡门大变形理论,利用Hamilton原理建立复合材料层合悬臂板的非线性动力学方程;选择符合边界条件的模态函数,利用Galerkin方法对系统进行四阶离散,得到四自由度非线性常微分方程;代入系统实际物理参数,应用MATLAB软件数值模拟得到系统振动幅值随电压激励变化的分叉图,由图可知,电压激励使系统从混沌运动变为倍周期运动,降低了系统振幅,保持系统的稳定.

  • 标签: 悬臂板 HAMILTON原理 分叉 非线性动力学 混沌
  • 简介:模糊控制器的设计是模糊控制系统的核心,而模糊控制器设计的关键部分是模糊规则,模糊规则的好坏决定了模糊控制系统的控制效果.而一般模糊规则是通过专家经验获得的,存在很大的主观性的缺点,本文以智能悬臂梁结构为研究对象,设计了模糊控制器,改进了遗传算法,提出了使用改进遗传算法对模糊规则进行优化的方法,并给出了遗传编码、适应度函数的确定方法,最后利用Matlab/Simulink建立智能悬臂梁结构的仿真模型,对模糊规则优化前后的智能悬臂梁振动控制结果进行对比.仿真结果表明,优化后的模糊规则使智能悬臂梁的振动幅度显著缩小,而且振动衰减速度明显加快.

  • 标签: 模糊控制器 模糊规则 改进遗传算法 智能悬臂梁 MATLAB
  • 简介:由于一类双悬臂含间隙振动系统具有典型非光滑特性和有明显的非线性,这直接导致了系统发生分又与混沌现象的可能性.为此针对该系统的混沌现象,利用基于能量的开环控制策略,构造有界控制器对混沌行为进行控制,混沌运动可被引导到稳定的目标周期轨道,并对控制的收敛速度进行分析,数值模拟结果表明了该控制策略的有效性与可行性,可为碰振系统的优化设计,振动控制和安全运行提供了理论参考.

  • 标签: 非光滑特性 分叉 混沌 碰振系统
  • 简介:蜂窝夹层结构因其良好的力学特性,在众多工程领域具有非常广泛的应用.本文建立了悬臂边界条件下,蜂窝夹层板的动力学模型并研究其非线性动力学行为.选取文献中更加接近实体有限元解的等效弹性参数公式对蜂窝芯层进行等效简化,得到六角形蜂窝芯的等效弹性参数.基于Reddy高阶剪切变形理论,应用Hamilton原理建立悬臂式蜂窝夹层板在受到面内激励和横向激励联合作用下的偏微分运动方程.然后利用Galerkin方法得到两自由度非自治常微分形式运动方程.在此基础上,通过对悬臂式蜂窝夹层板进行数值模拟分析系统的非线性动力学.结果表明面内激励和横向激励对系统的动力学特性有着重要影响,在不同激励作用下系统会出现周期运动、概周期运动以及混沌运动等复杂的非线性动力学响应.

  • 标签: 蜂窝夹层板 悬臂 非线性动力学 周期 混沌
  • 简介:首先建立了柔性悬臂梁非线性非平面运动的偏微分方程;然后运用Galerkin和多尺度方法得到平均方程,并利用规范形理论进一步将方程化简;最后用能量相位求出多脉冲跳跃的能量函数序列.Dynamics软件数值计算表明:在系统中确实存在着由多脉冲跳跃而导致的Smale马蹄型混沌.

  • 标签: 非线性动力系统 混沌动力学 柔性悬臂梁 多脉冲轨道分析
  • 简介:对构造的单边碰撞悬臂梁系统进行实验的定性研究,在基础激励实验中,变换多次激励频率,通过加速度传感器测量悬臂梁测点的响应信号,并通过力传感器测量得到限位器与柔性悬臂梁之间的碰撞力.通过Matlab软件对实测响应的时、频域分析处理,观察到系统复杂的周期、概周期、混沌等多种运动形式,并发现其中运动形式变化的区间存在突变.尝试对实验时域数据计算最大Lyapunov指数,以进一步验证其中混沌的存在,进一步发现了混沌响应下末端加速度响应与碰撞力的传递函数具有频响函数特征.实验研究体现了非线性动力学现象,也对分析应用混沌运动的实验结果提供了一个新视角.

  • 标签: 非线性振动 悬臂梁 单边碰撞 周期运动 混沌运动
  • 简介:针对复合材料层合悬臂板,在其上表面铺设压电纤维复合材料MFC作为作动器,同时在下表面对称铺设压电薄膜(PVDF)作为传感器,应用速度反馈控制方法研究其主动振动控制.运用Hamilton原理和假设模态推导含多个MFC作动器的复合材料层合板的力电耦合结构运动方程,其中考虑了MFC作动器作为悬臂板附加质量及刚度的影响.基于模态控制力/力矩最大化的原则,将多对MFC作动器/PVDF传感器铺设在层合悬臂板前几个低阶模态应变最大的区域,通过算例得出结构受控前后的时域和频域响应以及各MFC作动器所需的控制电压曲线.讨论复合材料层合板纤维铺设角度不同情况下,作动器MFC铺设位置及压电纤维铺设方向的相应变化.

  • 标签: 复合材料悬臂板 压电纤维复合材料(MFC) 纤维铺设角度 模态控制
  • 简介:研究了横向气动载荷和参数激励联合作用下复合材料悬臂外伸矩形板在伸出过程中的非线性动力学问题.根据Reddy的高阶剪切层合板理论,应用Hamilton原理建立了外伸板在横向气动力和参数激励作用下的非线性动力学方程,其中横向气动力采用一阶活塞气动力.然后应用Galerkin方法对系统偏微分形式的非线性方程进行离散,得到了一组时变系数的非线性动力学方程.在此方程的基础上,对复合材料悬臂外伸板进行了数值模拟分析,讨论了外伸速度对悬臂外伸板非线性动力学特性的影响.

  • 标签: 复合材料悬臂外伸板 高阶剪切理论 活塞理论 HAMILTON原理 非线性动力学
  • 简介:研究了作大范围旋转运动高度和宽度均沿着梁长度方向变化的锥形悬臂梁动力学问题.采用Bezier插值方法对柔性梁的变形场进行描述,考虑柔性梁的纵向拉伸变形和横向弯曲变形,计人由于横向弯曲变形引起的纵向缩短,即非线性耦合项.运用第二类拉格朗日方程推导出作旋转运动锥形梁的动力学方程,并编制了动力学仿真软件,对作旋转运动锥形梁的频率和动力学响应进行研究.结果表明:不同锥形梁截面的动力学响应和系统频率将有明显差异,因此对实际系统合理建模,将能得到更为精确的结果.

  • 标签: 锥形梁 Bezier插值方法 锥度比 固有频率
  • 简介:应用数学与力学经常使用小参数摄动近似.在物理与力学中有大量保守体系的分析.保守体系的特点是保辛.本文指出小参数摄动保辛的问题应予考虑.位移摄动是保辛的,而辛矩阵的加法摄动则未能保辛.数值例题给出了对比.

  • 标签: 小参数摄动法 应用数学 位移法 辛矩阵 力学 近似
  • 简介:应用谐波—能量平衡求解了强非线性单摆方程,谐波-能量平衡与经典的摄动和谐波平衡不同,不是把微分方程和初始条件分离处理;而是把微分方程和初始条件同时处理.用谐波平衡,将描述动力系统的二阶常微分方程,化为以角频率、振幅为变量的非线性代数方程组,考虑能量平衡,构成角频率、振幅为变量的封闭方程组求得解析解.谐波-能量平衡将谐波平衡与能量平衡相结合,克服了二者的缺点吸取了二者的优点.实例表明,谐波-能量平衡法方法简单,取较少谐波就可以达到较高的精度.

  • 标签: 强非线性 单摆 谐波—能量平衡法
  • 简介:定义对称轮轨系统对称性分岔的概念,由数值积分得到系统的时间响应并建立对称轮轨系统的离散动态Poincare映射截面及其对称截面,提出“合成分岔图”的构造方法,应用该方法对一两轴转向架系统运行与理想平直轨道上的对称/不对称分岔行为和混沌运动进行分析.在研究速度范围内,发现系统存在大量的对称运动形式,也存在很多的不对称运动形式,系统的对称性刚开始是通过不可捉摸突变而破坏的.

  • 标签: 轮轨系统 “合成分岔图” 对称/不对称 分岔
  • 简介:正交模型-正交模态(CMCM)是一种参数修改的新方法,它具有不依赖于灵敏度分析、不需要进行迭代的特点.但是在有限元存在整体建模误差时,该方法会出现无法完成修正计算的情况,本文针对此问题进行了改进.改进后的方法可以既可以处理存在局部建模误差的情况,也可以处理存在整体建模误差的情况.本文通过梁式结构的数值算例,比较了原修正方法(CMCM)、改进后的修正方法(ICMCM)以及商业软件模型修正FEMtools的修正效果.结果表明:改进的正交模型-正交模态方法可以使分析频率更好地逼近实验值,物理参数的修改也更加准确.

  • 标签: 模型修正 有限元 模态
  • 简介:电磁场节点有限元因未强加电场散度为零的条件而一直受到伪解出现的困扰.本文针对电磁共振腔问题,给出在频域的Maxwell方程表达式.通过引入Lorentz条件,推导出电磁共振腔二类变量和三类变量的变分原理,由此提出了新的电磁共振腔节点有限元,避免了伪解的出现.最后用子空间叠代求解了共振腔的本征值问题.数值算例表明本文方法是有效可行的.

  • 标签: 电磁波 有限元 共振腔 本征值 子空间叠代法
  • 简介:结合Liouville—Green变换,改进了求解变系数二阶线性齐次方程的渐近.并采用改进后的渐近研究了负载钢丝绳的固有振动问题,推导出了其固有振动的近似频率特征方程.实例计算表明,改进后的渐近不但比Bessel函数计算简便,而且计算精度也非常高.

  • 标签: 渐近法 负载 频率
  • 简介:描述了振动声系统建模技术的基本概念.根据域分解的连续性条件,讨论了界面的压力和速度连续以及阻抗连续,应用加权余量推导了两者的耦合模型.并用LMS/SYSNOISERev5.5进行了有限元数值模拟,计算结果与有限元结果符合得较好.通过比较两种连续性条件,发现前者更适合较小的计算模型而后者更适合较大的计算模型.最后对域分解提出了几个简单优化原则.

  • 标签: 声学 多域 域分解 Trefftz法
  • 简介:研究因结构激励导致的不规则形状的车厢封闭空腔声场.利用改进Trefftz方法,对复杂形状的车厢空腔进行声学系统简化波函数建模.结合声固耦合关系,利用加权残数处理边界条件,得出该声压稳态响应的波函数级数展开式,并给出了中低频噪声场的分析预测解.结合有源声控制理论,建立了复杂封闭腔体局部区域有源消声模型,并利用Matlab工具进行了数值仿真分析.仿真结果表明降噪效果良好,也证明了此方法的可行性.

  • 标签: Trefftz 封闭空间 主动控制 声固耦合
  • 简介:失重作用可能在空间中构造理想的球形液滴,它在空间流体科学、空间材料合成等中均有应用.在轨操纵中共振可能引起液滴的变形而影响实验质量,了解液滴晃动特性对空间实验的设计和避免与支撑结构的共振都有帮助.用瑞利-里兹研究了失重液滴的自由晃动问题,给出了液滴自由晃动的频率和模态函数.可利用表面上的动力学条件研究自由液滴的晃动特性,但由于耦合系统复杂,往往用能量加以研究.该方法作为一种能量,可为进一步研究失重环境中的液滴和支撑结构的耦合振动问题提供可行的途径.

  • 标签: 瑞利-里兹法 晃动 自由液滴
  • 简介:引入离散奇异内积分析材料非线性圆柱的动力响应.离散奇异内积方法是一种结合全局方法的高精度和局域方法的稳定性的计算方法.数值分析过程中用离散奇异内积方法离散空间导数,用四阶Runge—Kutta离散时间导数.计算结果表明,离散奇异内积格式的求解结果和LP的求解结果非常吻合.说明离散奇异内积格式非常适合数值分析材料非线性圆柱的动力响应问题,并且是一种具有很高的精度,和可靠性的高效的算法。

  • 标签: 离散奇异内积法 小波分析 动力响应 材料非线性 RUNGE-KUTTA法 动力响应