学科分类
/ 1
14 个结果
  • 简介:研究了具有有界耦合函数的不确定复杂动态网络的脉冲同步问题.根据脉冲控制的概念和脉冲微分方程的稳定性理论,我们利用一个灵活有效的脉冲控制实现了复杂动态网络的脉冲同步.最后,通过对混沌系统做网络节点的动态网络的数字模拟,验证了我们提出的脉冲控制方案的有效性和实用性.

  • 标签: 复杂网络 同步 脉冲控制
  • 简介:应用自适应脉冲控制策略实现输出耦合复杂网络的同步.通过构造Lyapunov泛函,设计合适的自适应脉冲控器,并利用脉冲微分方程理论,建立了网络的同步准则.该准则保证了动态网络渐进同步于任意指定的网络中的单独节点的状态.数值模拟表明所得控制器的有效性.

  • 标签: 复杂网络 同步 自适应控制 脉冲控制 输出耦合
  • 简介:给出了一种基于T-S模糊模型的混沌系统模糊脉冲控制方法.首先给出了基于T-S模糊模型对非线性系统精确建模的原理,得到与混沌系统等价的T-S模糊系统.然后根据建模得到的T-S模糊系统,采用模糊脉冲控制技术来实现控制.最后,以控制Ndolschi混沌系统为例,证明了这种方法的有效性.

  • 标签: 模糊控制 混沌控制 T-S模型 脉冲控制
  • 简介:对一类具有状态反馈控制的脉冲动力系统的动力学性质进行了研究.由周期解的扰动解得到了一个Poincare映射,利用Poincare映射讨论了系统周期解的分岔,并得到了半平凡周期解和正周期-1解存在和稳定的充分条件.定性分析和数学模拟表明,半平凡周期解通过fold分岔分岔出正周期-1解,正周期-1解通过flip分岔分岔出正周期-2解,再通过一系列flip分岔通向混沌.此外,讨论了脉冲状态反馈控制的效果.

  • 标签: 脉冲动力系统 状态反馈控制 分岔 周期解
  • 简介:首先建立了柔性悬臂梁非线性非平面运动的偏微分方程;然后运用Galerkin和多尺度方法得到平均方程,并利用规范形理论进一步将方程化简;最后用能量相位法求出多脉冲跳跃的能量函数序列.Dynamics软件数值计算表明:在系统中确实存在着由多脉冲跳跃而导致的Smale马蹄型混沌.

  • 标签: 非线性动力系统 混沌动力学 柔性悬臂梁 多脉冲轨道分析
  • 简介:针对一类非线性减震器,应用能量相位法研究了减震器系统在1∶0内共振,第一阶主共振情形下系统的多脉冲轨道和同宿树.首先,将系统的无量纲动力学控制方程转化为近可积哈密顿系统的标准形式.其次,研究了该系统的未扰动力学行为和扰动动力学行为,分析了耗散因子及相位漂移角对多脉冲轨道脉冲数和层半径的影响,揭示了这类非线性减震器能量从高频模态向低频模态转移的动力学机理.

  • 标签: 非线性减震器 能量相位法 多脉冲轨道 同宿树 能量转移
  • 简介:矿井提升机在提升重物的过程中,由于质量和刚度的变化引起的系统固有频率十分缓慢的变化,因此考虑钢绳质量的矿井提升机系统是一个慢变参数振动系统.本文首先应用Kuzmak-Luke的多尺度法得到有一般非线性弹性力的非线性振动系统解的周期性条件及用Jacobi椭圆函数表示的平方非线性振动和立方非线性振动的首阶渐近解.其次,将得到的结果分别应用于有平方、立方非线性弹性力的质量慢变的矿井提升系统.最后,将理论结果应用于某个矿井提升系统,应用算例的渐近解和数值解的比较表明本方法是有效的.

  • 标签: 非线性振动 矿井提升系统 多尺度法 慢变参数
  • 简介:研究了一类具有脉冲干扰和可变时滞区间关联大系统的鲁棒指数稳定性.假设该系统的关联函数满足全局Lipschitz条件,基于矢量Lyapunov函数法和数学归纳法,给出确保该关联系统鲁棒指数稳定的充分条件.最后给出一个数值算例用以说明本文所得到结论的正确性和有效性.

  • 标签: 关联系统 鲁棒稳定 脉冲 变时滞 矢量Lyapunov函数
  • 简介:基于改进的KBM法,研究了非线性多自由度自治系统的内共振.求出了极限环的振幅和近似解的表达式.与KBM法比较,该方法的特点是:近似解中包含项中的不再是时间的线性函数,而是时间的非线性函数,它能提高近似解的精度,且应用更广,最后给出一个具体实例,得到了近似解以及相图.和数值结果比较,本文方法具有较高的精度.

  • 标签: 强非线性多自由度自治系统 内共振 近似解
  • 简介:提出了非线性多自由度系统的一种新的参数识别方法,研究了二次非线性的2-自由度系统.基于保守系统存在能量积分的特点,由系统的运动微分方程导出了哈密尔顿函数,并用它作为参数识别的数学模型.利用系统自由振荡条件下相坐标测量值集合对系统的哈密尔顿函数进行拟合,并用最小二乘法进行参数识别.不管系统非线性度的强弱如何,只要系统是保守的,这种方法就有效.

  • 标签: 非线性多自由度系统 参数识别 哈密尔顿函数
  • 简介:同时考虑阻尼对响应频率和相位的影响,引入简单的变换,将有阻尼Duffing系统进行重写,得到的新系统在使用MLP方法的参数变换中,待定参数不受初始条件的影响,直接应用MLP方法有效的推导出受简谐激励作用下的含有阻尼的非线性Duffing系统主共振和1/3亚谐共振的分岔响应方程.首次将MLP方法直接应用于含有阻尼的Duffing系统,极大的推广了MLP方法的应用范围,并对退化为无阻尼系统的结果与现有文献结果相比较,得到满意的结论.

  • 标签: 强非线性 DUFFING系统 MLP方法
  • 简介:非线性系统经引入参数变换,并在一定的假设条件下,可转化为弱非线性系统.将其解展成为改进的傅立叶级数后,利用参数待定法可方便地求出非线性系统的共振周期解.研究了Duffing方程的主共振、VanderPol方程的3次超谐共振和VanderPol-Mathieu方程的1/2亚谐共振周期解.这些例子表明近似解与数值解非常吻合。

  • 标签: 非线性系统 共振 参数变换 傅立叶级数 渐近法
  • 简介:将参数变换法和随机多尺度法结合起来,研究窄带随机噪声激励下非线性Duffing-Rayleigh振子的响应及稳定性问题.首先借助参数变换思想引入小参数,然后用多尺度法分离了系统的快变量,最后由摄动法和矩方程法得到了系统的稳态响应.并利用Routh-Hurwitz准则得到了稳态解稳定的充要条件.理论分析与数值计算表明:在一定条件下,系统存在两个稳定的稳态解.数值模拟的结果表明:参数变换法结合随机多尺度法研究非线性随机系统的响应、稳定性等问题是有效的.

  • 标签: 强非线性随机系统 多尺度法 Routh-Hurwitz准则 Duffing-Rayleigh振子 参数变换 窄带随机噪声
  • 简介:将同伦理论和参数变换技术相结合提出了一种可适用于求解非线性动力系统响应的新方法,即PE-HAM方法(基于参数展开的同伦分析技术).其主要思想是通过构造合适的同伦映射,将一非线性动力系统的求解问题,转化为一线性微分方程组的求解问题,然后借助于参数展开技术消除长期项,进而得到系统的解析近似解.为了检验所提方法的有效性,研究了具有精确周期的保守Duffing系统的响应,求出了其解析的近似解表达式.在与精确周期的比较中,可以得出:在非线性强度α很大,甚至在α→∞时,近似解的周期与原系统精确周期的误差也只有2.17%.数值模拟结果说明了新方法的有效性.

  • 标签: 系统响应 DUFFING系统 非线性动力系统 线性微分方程组 求解问题 非线性强度