简介:基于改进的KBM法,研究了强非线性多自由度自治系统的内共振.求出了极限环的振幅和近似解的表达式.与KBM法比较,该方法的特点是:近似解中包含项中的不再是时间的线性函数,而是时间的非线性函数,它能提高近似解的精度,且应用更广,最后给出一个具体实例,得到了近似解以及相图.和数值结果比较,本文方法具有较高的精度.
简介:将参数变换法和随机多尺度法结合起来,研究窄带随机噪声激励下强非线性Duffing-Rayleigh振子的响应及稳定性问题.首先借助参数变换思想引入小参数,然后用多尺度法分离了系统的快变量,最后由摄动法和矩方程法得到了系统的稳态响应.并利用Routh-Hurwitz准则得到了稳态解稳定的充要条件.理论分析与数值计算表明:在一定条件下,系统存在两个稳定的稳态解.数值模拟的结果表明:参数变换法结合随机多尺度法研究强非线性随机系统的响应、稳定性等问题是有效的.
简介:将同伦理论和参数变换技术相结合提出了一种可适用于求解强非线性动力系统响应的新方法,即PE-HAM方法(基于参数展开的同伦分析技术).其主要思想是通过构造合适的同伦映射,将一非线性动力系统的求解问题,转化为一线性微分方程组的求解问题,然后借助于参数展开技术消除长期项,进而得到系统的解析近似解.为了检验所提方法的有效性,研究了具有精确周期的保守Duffing系统的响应,求出了其解析的近似解表达式.在与精确周期的比较中,可以得出:在非线性强度α很大,甚至在α→∞时,近似解的周期与原系统精确周期的误差也只有2.17%.数值模拟结果说明了新方法的有效性.
简介:中心直裂纹巴西圆盘试样可以用于脆性材料在纯Ⅰ型、纯Ⅱ型以及Ⅰ-Ⅱ复合型载荷下的动态断裂韧度的测试.通过改变径向冲击的加载角口(加载方向相对于裂纹的倾斜角),可以方便地实现不同的Ⅰ、Ⅱ型动态断裂实验.本文用有限元软件ANSYS对试样进行动态复合型断裂模拟分析,研究了不同载荷、不同材料以及不同试样尺寸对动态无量纲应力强度因子的影响,得到了纯Ⅱ型加载所对应的加载角θa的近似计算公式.对于在斜坡载荷作用下的复合型断裂,Ⅰ、Ⅱ型应力强度因子具有相似的时间历程曲线,其比值逐渐趋近于一个常数.本文给出了不同无量纲裂纹长度的试样在不同加载角下对应的Ⅰ、Ⅱ型无量纲应力强度因子的比值K1(t)/KⅡ(t)(该比值称为复合比),利用该复合比,可以通过应变能密度因子准则求出试样的起裂角β0,得到的结果与文献给出的试验结果吻合得很好.
简介:根据古典阴阳互补和现代对偶互补的基本思想,通过罗恩早已提出的一条简单而统一的新途径,系统地建立了弹性膜结构动力学的各类非传统Hamilton型变分原理.这种新的非传统Hamilton型变分原理能反映这种动力学初值一边值问题的全部特征.文中首先给出膜结构动力学的广义虚功原理的表式,然后从该式出发,不仅能得到膜结构动力学的虚功原理,而且通过所给出的一系列广义Legendre变换,还能系统地成对导出弹性膜结构动力学的5类变量(Pα,Pβ,pγ,Vα,Vβ,Vγ,Nα,Nβ,Sαβ,εα,εβ,εαβ,u,v,w)、4类变量(Pα,Pβ,pγ,Vα,Vβ,Vγ,Nα,Nβ,Sαβ,εα,εβ,εαβ,u,v,w)、3类变量(Nα,Nβ,Sαβ,εα,εβ,εαβ,u,v,w)和2类变量(Nα,Nβ,Sαβ,u,v,w)非传统Hamilton型变分原理的互补泛函、以及相空间(Pα,Pβ,pγ,u,v,w)非传统Hamilton型变分原理的泛函与1类变量(u,v,w)非传统Hamilton型变分原理势能形式的泛函.同时,通过这条新途径还能清楚地阐明这些原理的内在联系.
简介:根据古典阴阳互补和现代对偶互补的基本思想,通过罗恩提出的一条简单而统一的新途径,系统地建立了平面框架结构折线型弹塑性动力学的各类非传统Hamilton型变分原理.文中首先给出平面框架结构折线型弹塑性动力学的广义虚功原理的表式,然后从该式出发,不仅能得到平面框架结构折线型弹塑性动力学的虚功原理,而且通过所给出的广义Legendre变换,还能系统地成对导出平面框架结构折线型弹塑性动力学的5类变量分原理的互补泛函,以及1类变量和相空间非传统Hamilton型变分原理的泛函.同时,通过这条新途径还能清楚地阐明这些原理的内在联系.
简介:研究了非线性随机动力系统所对应的Fokker-Planck-kolmogorov(FPK)方程.讨论了微分方程的可朗克(Crank)一尼考尔逊(Nicolson)型隐式有限差分格式以及微分的四阶中心差分格式,将两者相结合,得到FPK方程的四阶中心C-N隐式格式差分解,并与FPK方程的精确解进行了比较.数值结果表明,该方法具有良好的稳定性,且可以解决其他方法在概率密度峰值处偏小,而在尾部处较大等缺点.