学科分类
/ 1
4 个结果
  • 简介:对近20年来国内外在公路动力冲击系数方面的研究进展进行了回顾.首先介绍了动力冲击系数的概念.然后,分别从试验研究和数值模拟两方面介绍了相关的研究进展和成果,并详细讨论了不同参数对动力冲击系数的影响.接着,介绍了世界各国规范中动力冲击系数的取值规定.最后,总结了该领域已取得的一些重要进展,并探讨了该课题可以进一步研究的方向.

  • 标签: 车桥耦合作用 动力冲击系数 现场试验 数值模拟
  • 简介:本文对移动车辆作用下桥梁系统的振动能量俘获进行了研究.将车辆模型简化为车轮--弹簧--阻尼器--簧上车身质量体系,桥梁简化为对边简支对边自由板模型,压电俘能结构采用粘贴有压电晶体材料的悬臂梁并在其末端附加一质量块.对于这个耦合动力学模型,首先,通过板壳振动理论推导出了移动车辆作用下板的运动微分方程;其次,根据欧拉伯努利梁振动理论和基尔霍夫第一定律得到了以桥梁振动响应作为激励的悬臂梁动力学--压电耦合方程;最后,对耦合运动微分方程进行了求解并对其数值模拟结果进行了分析.结果表明:采用设计的压电俘能结构可以有效地收集桥梁系统的振动能量,而压电装置的位置、压电梁的厚度、集中质量、车辆速度对压电俘能效率都有一定影响.

  • 标签: 振动响应 俘能 压电 桥梁
  • 简介:首先利用哈密顿原理,将桥梁结构振动微分方程转化为哈密尔顿正则方程形式,然后将精细积分思想的算法引入到辛算法中,形成辛精细积分算法.在时间微段上,将非齐次项正弦/余弦化,得到了荷载识别的辛精细积分格式.与传统Runge-Kutta方法及荷载识别的精细积分格式相比,仿真算例表明本文算法不仅提高了识别精度,而且在长期定量计算中保持了辛算法的稳定性,计算结果不受积分步长的影响,因此可通过增大积分步长,缩短仿真时间,提高计算效率.

  • 标签: 荷载识别 桥梁结构 哈密尔顿系统 辛精细积分 移动荷载 Runge-Kutta方法
  • 简介:传统航天器结构模态试验通常会用来检验结构有限元分析模型,但往往是通过人工调整有限元模型参数来修正模型,分析与试验联系不紧密,影响后续分析结果的精度、研制周期和经费等.为改变航天器模态分析及试验现状,文中介绍了模态分析-试验体系工程研制流程在理论上的可行性,并以某缩比舱段为例,基于Virtualab-Nastran软件平台,完整实施模态分析-试验体系过程,包括预试验分析、模态试验、模型修正等过程,紧密联系模态分析、试验,并依据试验结果准确快速修正有限元模型,使分析结果与试验接近,实现精确建模.

  • 标签: 模态分析 模态试验 模型修正 有限元