学科分类
/ 1
4 个结果
  • 简介:针对传统数值方法求解微分-代数方程过程中经常遇到的违约问题,本文以空间太阳能电站太阳能接收器的简化二维模型为例,采用辛算法模拟了简化模型的展开过程,研究了辛算法在求解过程中约束违约问题.首先,基于Hamilton变分原理,将描述简化二维模型展开过程的Euler-Lagrange方程导入Hamilton体系,建立其Hamilton正则方程;随后,采用s级PRK离散方法离散正则方程,得到其辛格式;最后,采用辛PRK格式模拟太阳能接收器的二维展开过程.模拟结果显示:本文构造的辛PRK格式能够很好地满足系统的位移约束.

  • 标签: 辛PRK格式 保结构 空间太阳能电站
  • 简介:针对可分型矩阵的特性,结合2^N类算法为可分型指数矩阵的计算提出一种快速精细积分法.核心思想是:利用可分型矩阵中的子矩阵进行分块计算;增加Taylor展开式的保留项数,减少迭代次数.一方面,程序实现简便,另一方面,数值算例表明:对矩阵维数很大的可分型指数矩阵计算来说,本文的快速精细积分法减少了计算量和存储量,大大地提高了计算效率.

  • 标签: 可分型指数矩阵 2N类算法 快速精细积分法 子矩阵
  • 简介:研究了非高斯列维噪声作用下非线性系统的渐近线性化方法和Lyapunov指数.利用渐近线性化方法将非线性系统线性化,通过系统的响应轨迹验证了该方法的有效性.通过广义的伊藤法则公式,推导出了列维噪声驱动下Lyapunov指数的一般表达式.给出当参数变化时,非线性系统的随机稳定性分析.

  • 标签: 非高斯列维噪声 渐近线性化 LYAPUNOV指数 随机微分方程
  • 简介:研究了一类具有脉冲干扰和可变时滞区间关联大系统的鲁棒指数稳定性.假设该系统的关联函数满足全局Lipschitz条件,基于矢量Lyapunov函数法和数学归纳法,给出确保该关联系统鲁棒指数稳定的充分条件.最后给出一个数值算例用以说明本文所得到结论的正确性和有效性.

  • 标签: 关联系统 鲁棒稳定 脉冲 变时滞 矢量Lyapunov函数