学科分类
/ 8
148 个结果
  • 简介:根据分数阶系统的相关理论研究了一类分数阶复杂网络混沌系统的投影同步问题,给出了分数阶复杂网络以及分数阶时滞复杂网络系统实现投影同步的充分性条件,仿真结果表明了方法的正确性.

  • 标签: 投影同步 分数阶系统 复杂网络
  • 简介:基于转子动力学、Hertz理论和非线性动力学理论,针对一端支座松动的滚动轴承-转子系统的运动特征,考虑了松动间隙的非线性情况,建立了系统的动力学方程.在对转子系统动力学方程进行数值积分之后,通过分叉图、庞加莱图、相图和关联维数等显示了转子系统随转速变化和松动间隙的扩展会出现复杂动力学现象,并且研究了滚动轴承-转子系统在支承松动时的分岔和混沌运动及其变化规律,得出了有工程价值的结论,这些结论可为该类故障的诊断提供参考.

  • 标签: 支座松动 混沌运动 故障诊断 动力学 滚动轴承-转子系统
  • 简介:采用面向对象技术对复杂机械系统动力模型元素进行了分析.根据其特点提出了支持动力学仿真建模平台的模型元素类体系结构,并对该平台关键技术--关联关系管理和子系统建模进行了探讨.最后应用上述技术开发出了仿真建模平台InteDyn,并以汽车整车模型和悬架模型为例证明了这些技术的可行性和有效性.

  • 标签: 复杂机械系统 动力学 建模 模型元素 面向对象
  • 简介:研究了具有有界耦合函数的不确定复杂动态网络的脉冲同步问题.根据脉冲控制的概念和脉冲微分方程的稳定性理论,我们利用一个灵活有效的脉冲控制实现了复杂动态网络的脉冲同步.最后,通过对混沌系统做网络节点的动态网络的数字模拟,验证了我们提出的脉冲控制方案的有效性和实用性.

  • 标签: 复杂网络 同步 脉冲控制
  • 简介:根据符号动力系统与真实动力学系统拓扑共轭的特性,本文提出动态标架分割法,把动力学系统的某时间变量序列转化成符号序列;运用Lemple-Ziv复杂度算法计算该符号序列的复杂度值,据此对动力学系统复杂性进行分析,从而可以对动力学系统的性质进行定性地判断,以杜芬振子为例,数值模拟结果表明基于动态标架分割法计算得到的复杂度能够很好地描述系统复杂性,并可定性地判断系统的性质。

  • 标签: 符号时间序列 动态标架分割法 Lemple-Ziv复杂度 动力学系统
  • 简介:应用自适应脉冲控制策略实现输出耦合复杂网络的同步.通过构造Lyapunov泛函,设计合适的自适应脉冲控器,并利用脉冲微分方程理论,建立了网络的同步准则.该准则保证了动态网络渐进同步于任意指定的网络中的单独节点的状态.数值模拟表明所得控制器的有效性.

  • 标签: 复杂网络 同步 自适应控制 脉冲控制 输出耦合
  • 简介:研究了改进的Morris—Lecar(ML)神经元模型的放电节律模式和模式转化的峰峰间期(interspikeintervals,ISIs)分岔结构,通过调节模型中的两个重要参数μ和Vk,发现对于固定的μ,改变Vk,神经元呈现出从倍周期级联分岔到加周期分岔的复杂结构,放电模式从静息态转化为周期、混沌簇放电状态;若选取此分岔过程中的某一Vk值,对μ进行调节,呈现出的ISIs分岔结构在很大程度上取决于单个神经元的放电节律模式,且单个神经元处于混沌簇放电时,肛带来的分岔动力学行为较丰富.由于神经元能够通过动作电位对信息进行编码,所以我们推测,研究神经元的放电节律模式和动作电位的ISIs分岔结构能为理解神经信息编码机制提供线索.

  • 标签: 分岔 峰峰间期 神经编码
  • 简介:研究了不确定参数的Lorenz系统和Rossler系统的异结构同步问题.基于Lyapunov稳定性理论,采用主动同步,自适应同步两种方法实现异结构混沌系统的同步,并且利用数值模拟来阐释理论的有效性.

  • 标签: 混沌系统 主动同步 自适应同步 LYAPUNOV稳定性理论
  • 简介:研究一类混合非完整系统的运动.它可分为3个阶段:第1阶段为完整系统的连续运动,第2阶段为冲击运动,第3阶段为非完整系统的连续运动.后一阶段的初始条件由前一阶段的运动终了条件确定.举例说明结果的应用.

  • 标签: 非完整系统 混合 连续运动 冲击运动 初始条件 一阶
  • 简介:分析了梁摆系统的耦合振动,梁和摆均考虑为线性.研究发现该系统含有非线性动力行为,在某些条件下会发生叉形分叉.用结构动力学理论建立了梁摆系统的耦合振动方程,用摄动法求出了系统的近似解,分析了该系统的动力响应及分叉.最后用MATHMATIC软件对分叉点前后动力响应进行分析.

  • 标签: 耦合振动 分叉 摄动法
  • 简介:研究Birkhoff系统Noether逆定理.提出对Birkhoff系统由已知的守恒量导出Noether对称性的一般解法,指出一般解法中的困难.通过引入守恒量和对称性直接相关的辅助方程,给出逆定理的特殊解法.举例说明了所得结果的应用.

  • 标签: BIRKHOFF系统 NOETHER理论 Noether逆定理 守恒量 对称性
  • 简介:给出了一种实现混沌系统混沌同步的控制方法.通过引入一待定的控制项,将两系统的混沌同步问题转化为讨论与其对应的线性系统的0解渐近稳定性问题,然后根据线性系统控制理论确定此控制项,以实现两混沌系统的同步目的.该方法简单易行,可有效的实现两个混沌系统的混沌同步,且其同步是全局渐近稳定的.

  • 标签: 全同混沌系统 混沌同步控制 全局渐近稳定 连续混沌系统 线性反馈可控性定理
  • 简介:提出广义斜梯度系统并研究Birkhoff系统的广义斜梯度表示.给出系统成为广义斜梯度系统的条件.利用广义斜梯度系统的性质来研究系统解的稳定性.举例说明结果的应用.

  • 标签: BIRKHOFF系统 广义斜梯度系统 稳定性
  • 简介:应用Liapunov-Floquet变换,将参数振动系统转换成一个时不变系统,结合极点配置法,构成一个控制品质稳定的振动主动控制系统.并以机翼与航空发动机转子耦合振动为例,叙述参数振动主动控制结构以及控制系统稳定性的仿真结果.

  • 标签: 参数振动 Liapunov-Floquet变换 极点配置 主动控制 航空发动机转子
  • 简介:引入状态变量表示力学系统的约束方程;建立状态空间中运动约束系统的新型变分原理;导出运动约束系统的带乘子的运动微分方程和广义状态变量运动微分方程;证明状态空间中运动约束系统的运动方程是奇异的;举例说明所得结果的应用.

  • 标签: 分析力学 状态空间 运动约束 变分原理 运动方程
  • 简介:讨论了新混沌系统——Liu系统的混沌同步问题,基于Lyapunov函数分别提出了单变量以及多变量的线性状态反馈控制方案,采用这两种线性控制方案均可实现Liu系统的混沌同步,线性反馈控制比起非线性控制具有结构简单、易于实现的特点,数值模拟结果验证了两种方案的可行性。

  • 标签: Liu系统 混沌同步 线性反馈控制
  • 简介:用数值模拟的方法,研究了Host-Parasitoid模型.该模型是一类非线性离散系统,反映了在一定的时间和空间内,寄生虫和寄宿主之间的生存状态.通过调节各种影响下的分岔参数,可以观察到系统具有周期泡,倍周期分叉,间歇混沌和Hopf分岔等复杂非线性动力学现象,揭示了系统通向混沌的途径.利用不同周期遍历下的奇怪吸引子和具有分形边界的吸引盆对系统的非线性特性进行了深入的探讨.最后利用参数开闭环控制法对系统的混沌状态进行了有效的控制.数值仿真和理论分析表明,选择相应的控制参数可将该系统的混沌状态控制到不同的稳定周期运动.

  • 标签: Host-Parasitoid模型 分岔 混沌 吸引盆 混沌控制
  • 简介:设计了非线性参数控制器来改变参数激励系统的稳态响应,消除了系统主共振时的鞍结分岔和减小了系统稳态响应的幅值.从而消除了系统特有的跳跃和滞后现象.首先由多尺度法得到系统的近似频响方程,再由奇异性理论来分析分岔特性,从而实现非线性控制的目标.由数值模拟来确定了非线性参数控制器的有效性和可行性.

  • 标签: 参数激励系统 分岔控制 非线性参数前馈控制 鞍结分岔 跨临界分岔
  • 简介:针对工程中需要从火箭结构系统的整体模态中识别纵向模态,根据模态有效质量理论,提出了一种识别火箭结构系统纵向模态的自动辨识方法.以具有集中质量系统的振动特性作为算例,通过有限元软件,建立了具有集中质量系统的梁模型,利用自动辨识的方法,自动辨识出系统的纵向模态,并与应用模态分析法所计算的系统模态信息相比较,这种自动辨识方法不仅能准确的辨识出振动系统的纵向模态,而且还具有自动高效的识别特点.为准确快速建立液体火箭POGO振动系统的动力学模型等工程系统的模型提供理论依据.

  • 标签: 火箭结构系统 纵向模态 模态有效质量 自动辨识 模态分析
  • 简介:主要讨论了分数阶混沌系统的同步问题.采用线性以及自适应控制两种不同的方案实现了分数阶Rucklidge系统的混沌同步.这两种方案均具有结构简单、易于实现的特点.而且,基于分数阶微分方程稳定性理论,可以保证同步是全局渐近稳定的.最后,数值结果证明了两种方案的可行性.

  • 标签: 混沌同步 分数阶混沌系统 线性反馈 自适应控制