简介:针对含间隙的两自由度弹簧-质量分段振动系统的非线性模态开展了研究.首先,解析确定了分段保守自治系统发生同相和反相模态运动的初始位移,并采用加权平均方法确定了分段振动系统的模态频率,及其在位形空间模态曲线.然后,采用数值方法求解了系统的非线性模态曲线和模态频率,与本文获得的解析模态频率比较,说明本文的结果较等效模态频率有更好的精度.研究结果表明:在一定的参数条件下,系统的非线性模态个数会高于系统的自由度数目,系统可能发生内共振,而产生多余模态.多余模态运动是两振子同向振动中含有异向振动,说明多余模态是在同相模态运动和反相模态运动之间转换的模态.
简介:本文中,我们讨论了含参量分数阶微分系统的基本分岔,即跨临界分岔、折叠分岔与音叉分岔.首先,根据分数阶Lyapunov方法,讨论了含参量分数阶微分系统的稳定性,并给出了这些基本分岔的相图.其次,根据Taylor展式与隐函数定理,研究了分数阶微分系统的规范形,从而求出这些基本分岔的拓扑规范形.
简介:为研究含间隙齿轮碰振系统的全局及周期运动的稳定性及分岔条件,建立了齿轮副主动轮的单自由度非线性动力学模型.运用非光滑系统Melnikov理论研究齿轮系统异宿轨道全局分岔条件,然后,求得各分段系统的通解,再将每个切换面作为Poincaré截面,运用组合映射的方法分析系统的周期运动特性.最后通过数值模拟,得到不同参数条件下系统的运动状态和分岔特性,验证了Melnikov方法分析齿轮非光滑系统的有效性.
简介:线弹性静力学中有最小势能原理和最小余能原理,但只适用于物体或结构在给定约束条件下处于稳定平衡状态的情况,而在一般情况下动力学问题不可能存在稳定平衡状态,因此在动力学领域中是否存在最小势能原理值得认真考虑.本文对动力学问题中存在最小势能原理的可能性进行了探讨,并以摆脱了"平衡态"和"稳定态"的限制的最小功耗原理为理论基础,导出了线弹性动力学中的最小势能原理和最小余能原理.给出了计算实例,结果正确.因此在线弹性动力学中存在瞬时意义下的最小势能原理和最小余能原理.但其含义与静力学中的最小势能原理和最小余能原理并不相同.其主要区别在于:动力学中的原理适用于不稳定过程之任一瞬时,其"最小"是指"当时(即该瞬时)所有可能值的最小".而静力学中的最小势能原理则只适用于稳定平衡状态,其"最小"是指系统从不稳定最后达到稳定平衡的整个过程中所有"真实值中的最小".即前者是"当时的最小",后者则是"全过程中的最小".这两类变分原理可成为线弹性动力学中各种变分直接解法的理论基础.
简介:研究了乘性噪声和加性噪声共同作用下含有两种不同时滞项的双稳系统中的平均首次穿越时间.首先通过近似方法得到了平均首次穿越时间的解析式,然后研究了乘性噪声强度、时滞量及噪声关联强度对平均首次穿越时间的影响.当噪声关联强度取正值时,平均首次穿越时间T1(x-→x+)是乘性噪声强度及两种时滞量的非但调函数,是噪声关联强度的单调递增函数.包含在确定力与振荡力中的时滞量分别影响T1(x-→x+)的最大值及对应的噪声强度.平均首次穿越时间T2(x+→x-)是包含在确定力中的时滞量的非单调函数,是乘性噪声强度、另一种时滞量及噪声关联强度的单调递减函数.